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ROLE OF AUTONOMOUS OPERATION IN
IMPROVING NUCLEAR UNITS' PROFITABILITY

Impact of O&M costs on the economy of Nuclear Units

= Currently operated units are struggling to stay competitive in U.S. Deregulated markets.
Significant impact of fixed O&M costs (largest portion goes to payroll for staffing).

How can Autonomous Operation help saving on O&M costs?
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= Limiting the number of operators in the MCR »
(Main Control Room) does not significantly 120
reduce costs
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= Most of the savings can be accomplished by
optimizing the maintenance schedule
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= Maintenance interventions can be less time-
consuming, number of on-site technicians
reduced
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AUTONOMOUS OPERATION AS A TEAMWORK
PROCESS (1/2)

Teams without teamwork defeat the purpose of teams

= When collaboration is correctly applied, itis one of the best ways for nuclear units to produce
power with fewer errors, events and improved performance.

Detecting

: , d
= U.S. NRC organized a team of researchers to review N;?cing

literature in psychology, cognition, behavioral science
and apply it to human performance in Nuclear Power
Plant operation (NUREG-2114, January 2016).

= Cognitive framework focuses on the nature of human
performance “in the field” where decisions must be
made quickly, in risky or high-stake situations. If one of
five cognitive functions is missing, errors might occur.
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AUTONOMOUS OPERATION AS A TEAMWORK
PROCESS (2/2)

SENSORS
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HOW Al ALGORITHMS CAN ENABLE
AUTONOMOUS OPERATION
OPERATOR

LlSt Of key Concepts Plant Control System Y

suggested

DECISION-MAKING decisions

GRA-driven Markov process
Optimization algorithm

demanded
power output

» Application of Al/ML algorithms to
Normal Operation only
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- Algorithms fulfiling Control, ; | o | ~ ;
Diagnostics and Decision-making DIAGNOSTICS faults - B P!ant_ |
tasks need to “talk” to each other L[ ) | | Protection |
i s |1 System |
« Plant Protection System (PPS) must ! i B 5
be allowed to take over in case of ; : contrlled o i
violation of limits on safety variables | A N i
: \ ' :
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* Ensure to Operators the opportunity ! - g o !
to override the Supervisory Control ) D 1[ ---------
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AUTONOMOUS OPERATION-ORIENTED
ARCHITECTURE: NEEDS AND SOLUTIONS (1/4)

Need to monitorthe Normal Operation Envelope
= To improve the profitability, flexible operation must be exploited to full extent
= Component conditions and performance evolve | PPS intervention Time-dependent bounds

.. « . . . degraded operation
in time. “Admissible Region” evolves accordingly. thresholds \, €9 peration)
Admissible

= Need of a control algorithm confirming Region Final
compliance of plant trajectories with safety Initial bounds State
bounds (necessary condition). (nominal conditions) '“l*
Identified SOLUTION: Reference Event triggering
PPS intervention
Governor

System response
during a power
transient

= Optimizes the set-points to meet load demand
by respecting the constraints

Initial
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AUTONOMOUS OPERATION-ORIENTED
ARCHITECTURE: NEEDS AND SOLUTIONS (2/4)

Transferability of control tasks to Operator
Supervisory controllayer can be

= Modular design ensures the Operator the bypassed, and set-points directly
possibility of manually providing set-points signals fed to PIDs
to PID controllers
’_~ Disturb

Set-point

, Adjusted \
Signal

o

1
1
‘ - I “ : CO!‘IIDO, ssssssssss ( :
| | omenosmes | 1 Plant |
I ! DIAGNOSTICS ' ; !
__________________ ! ’ ' M Protection |
uuuuuu ! |
constraints _if y Sy stem !
Measuremen t. R

= Reference Governor adjusts the set-points, not

the control actions | ~ .
= Currently-adopted, PID-based structure is i e — sl
preserved '

7 NUCLEAR POWER PLANT
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AUTONOMOUS OPERATION-ORIENTED
ARCHITECTURE: NEEDS AND SOLUTIONS (3/4)

Unexplored levels of integration means unprecedented failure modes

Q. In an architecture made of data- == [ossmor]
driven algorithms, whathappensif | e [0 |
sensor faults are not promptly L
diagnosed? L
i DIAGNOSTICS
= Poor performance of PID controllers -

= Wrong diagnoses (sensor faults might be
interpreted as component-level faults)

= Wrong decisions (ineffective procedures are

selected)

= Damages to components and PPS
intervention

.
Undiagnosed
(&) ENERGY S5 svyistny 8 Sensorfault
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AUTONOMOUS OPERATION-ORIENTED
ARCHITECTURE: NEEDS AND SOLUTIONS (4/4)

—— Measured Data

—— Model Prediction

“Redundancy” might not be an option

Using multiple, independent sensors to monitor
hundreds of process variables is too expensive

)

Identified SOLUTION: PRO-AID

= PRO-AID can discriminate between Sensor-level
and Component-level faults

= Given the P&ID, a physics-based model of the
system is automatically assembled from a library of
components;

= Immune to plant operating point changes;
= Ranks component faults by probability;

= Auto reconfigures on dropped sensor.
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AUTONOMOUS OPERATION-ORIENTED

ARCHITECTURE: NEEDS AND SOLUTIONS (5/5)

Operating Plant

“Cost-Benefit Analyses
through Integrated
Online Monitoring and
Diagnostics”

(NEUP 19-17045)

Decisions should aim at maximizing profits
by limiting the risk for failures

Identified SOLUTION: Diagnostics-informed

Markov Decision Process (MDP)

Diagnostic Tool
(PRO-AID)

= Generation Risk Assessment (GRA) evaluates the
current system capacity capabilities, Probability
Risk Assessment (PRA) evaluates the risk of not

. Markov Markov Decision
meeting the demand. Component Process Analysis |
Healthy Models
= Markov models developed Real-time GRA
for each component of the
Intermediate Circuit.
Real-time PRA
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APPLICATION OF PROPOSED ARCHITECTURE
TO AN ADVANCED REACTOR DESIGN (1/4)
NEUP 20-19321 (ANL/UM/Kairos Power, 3 years, 1 M$)

Selected system:

» |ntegrated energy
system, i.e., a pebble-
bed fluoride salt-
cooled, high
temperature reactor
(KP-FHR) coupled
with molten-salt
thermal energy
storage.

= High-fidelity simulator realized by adopting
SAM (System Analysis Module) code.

T, U5 DEPARTMENT OF  Argonne National Laboratory is a
{7) ENERGY .S, Department of Energy laboratory
R managed by UChic:

00

Argonne &




APPLICATION OF PROPOSED ARCHITECTURE
TO AN ADVANCED REACTOR DESIGN (3/4)

Definition of the Test-case scenario

» Performance degradation fault addressed = Control, diagnostics and decision-making
via “compensation” algorithms characterized by characteristic
= Severe fault addressed via Operation Modes time-scale.
transition
PRA module updates
Stage # | Stage Description e : ~
1 System is in “Load-Following” mode (constant reactor Markov DeCi5i°’|‘ Process (MDP)
power, TES bypassed, constant load demand) Ve ~
2 “IHX Fouling” detected PRO-AID/Markov component models
|
3 Compensation through Actuators - N
4 Load demand increase I ' i i i i >
00 05 10 15 20 50.0 time (s)
5 MDP suggests switching to “Discharging” mode \ | I\ I A | A | )
6 “Double valve stuck” detected Sensor readings
7 MDP suggests transition to “Load-following” mode \ I A T A I A I

PID controllers/Command Governor
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APPLICATION OF PROPOSED ARCHITECTURE
TO AN ADVANCED REACTOR DESIGN (3/4)

Test-case simulation results: Diagnostics, GRA and PRA analysis

General

probability of system

failure
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probability of not meeting the
demand (failure)

current demand level

probability of meeting the demand

(success)

= Addressing load fluctuations through
‘compensation” and/or transitions to
different Operation Modes.

» Ensuring continuity of service while
meeting constraints.
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APPLICATION OF PROPOSED ARCHITECTURE
TO AN ADVANCED REACTOR DESIGN (4/4)

Test-case simulation results: system dynamic response
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