

ADVANCED REACTORS AND THE NEED FOR ADVANCED CONTROL SYSTEMS-ARGONNE NATIONAL LABORATORY-JULY 12-14, 2023

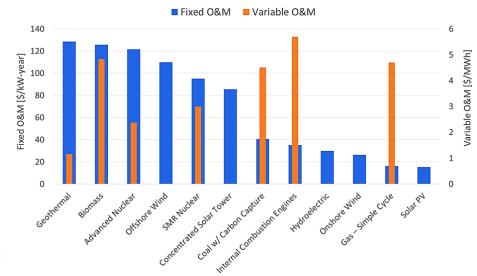
Α ΡΑΤΗ ΤΟ SEMI-AUTONOMOUS **OPERATION**

ROBERTO PONCIROLI, A.J. DAVE, T.N. NGUYEN, V. MOISEYTSEVA, H. WANG, R.B. VILIM (ANL/NSE)

B. KOCHUNAS (UM), A. CILLIERS (KP)

Principal Nuclear Engineer Nuclear Science and Engineering Division Argonne National Laboratory

July 13, 2023


ROLE OF AUTONOMOUS OPERATION IN IMPROVING NUCLEAR UNITS' PROFITABILITY

Impact of O&M costs on the economy of Nuclear Units

Currently operated units are struggling to stay competitive in U.S. Deregulated markets.
Significant impact of fixed O&M costs (largest portion goes to payroll for staffing).

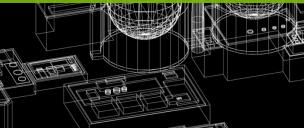
How can Autonomous Operation help saving on O&M costs?

- Limiting the number of operators in the MCR (Main Control Room) does not significantly reduce costs
- Most of the savings can be accomplished by optimizing the maintenance schedule
- Maintenance interventions can be less timeconsuming, number of on-site technicians reduced

AUTONOMOUS OPERATION AS A TEAMWORK PROCESS (1/2)

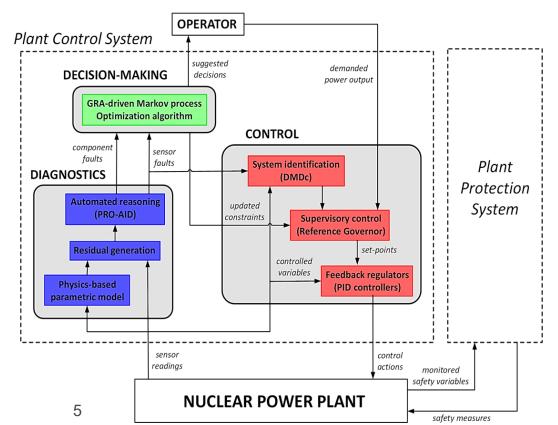
Teams without teamwork defeat the purpose of teams

- When collaboration is correctly applied, it is one of the best ways for nuclear units to produce power with fewer errors, events and improved performance.
- U.S. NRC organized a team of researchers to review literature in psychology, cognition, behavioral science and apply it to human performance in Nuclear Power Plant operation (NUREG-2114, January 2016).
- Cognitive framework focuses on the nature of human performance "in the field" where decisions must be made quickly, in risky or high-stake situations. If one of five cognitive functions is missing, errors might occur.



AUTONOMOUS OPERATION AS A TEAMWORK PROCESS (2/2)

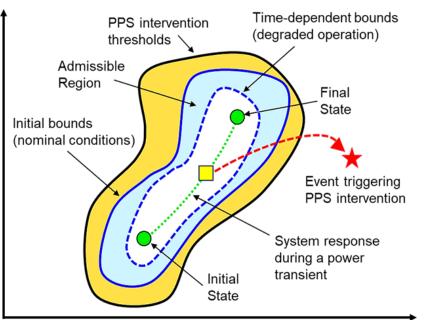
AUTONOMOUS OPERATION



HOW AI ALGORITHMS CAN ENABLE AUTONOMOUS OPERATION

List of key concepts

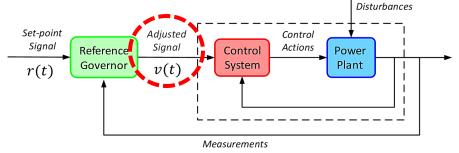
- Application of AI/ML algorithms to Normal Operation only
- Algorithms fulfilling Control, Diagnostics and Decision-making tasks need to "talk" to each other
- Plant Protection System (PPS) must be allowed to take over in case of violation of limits on safety variables
- Ensure to Operators the opportunity to override the Supervisory Control layer


AUTONOMOUS OPERATION-ORIENTED ARCHITECTURE: NEEDS AND SOLUTIONS (1/4)

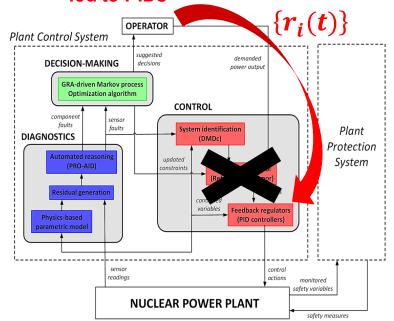
Need to monitor the Normal Operation Envelope

- To improve the profitability, flexible operation must be exploited to full extent
- Component conditions and performance evolve in time. "Admissible Region" evolves accordingly.
- Need of a control algorithm confirming compliance of plant trajectories with safety bounds (necessary condition).

Identified SOLUTION: Reference Governor


 Optimizes the set-points to meet load demand by respecting the constraints

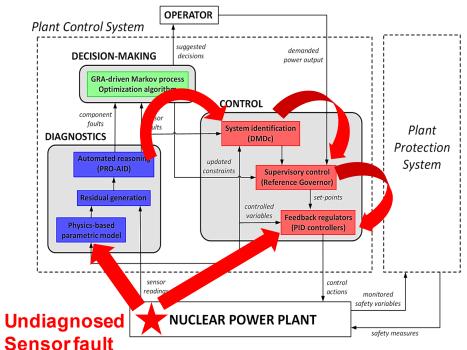
AUTONOMOUS OPERATION-ORIENTED ARCHITECTURE: NEEDS AND SOLUTIONS (2/4)


Transferability of control tasks to Operator

 Modular design ensures the Operator the possibility of manually providing set-points signals to PID controllers

- Reference Governor adjusts the set-points, not the control actions
- Currently-adopted, PID-based structure is preserved

Supervisory control layer can be bypassed, and set-points directly fed to PIDs


AUTONOMOUS OPERATION-ORIENTED ARCHITECTURE: NEEDS AND SOLUTIONS (3/4)

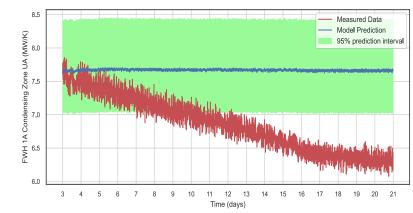
Unexplored levels of integration means unprecedented failure modes

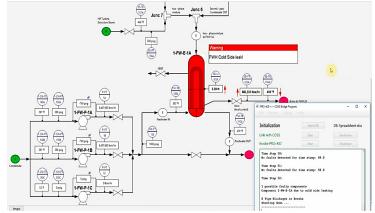
8

Q. In an architecture made of datadriven algorithms, what happens if sensor faults are not promptly diagnosed?

- Poor performance of PID controllers
- Wrong diagnoses (sensor faults might be interpreted as component-level faults)
- Wrong decisions (ineffective procedures are selected)
- Damages to components and PPS intervention

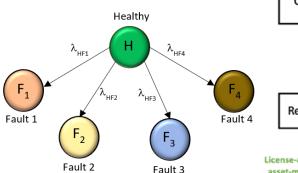
AUTONOMOUS OPERATION-ORIENTED ARCHITECTURE: NEEDS AND SOLUTIONS (4/4)


"Redundancy" might not be an option

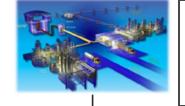

Using multiple, independent sensors to monitor hundreds of process variables is too expensive

Identified SOLUTION: PRO-AID

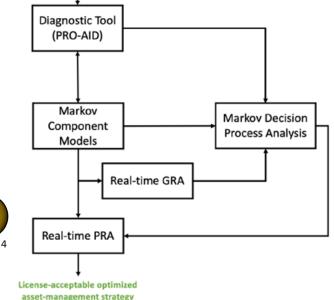
- PRO-AID can discriminate between Sensor-level and Component-level faults
- Given the P&ID, a physics-based model of the system is automatically assembled from a library of components;
- Immune to plant operating point changes;
- Ranks component faults by probability;
- Auto reconfigures on dropped sensor.


AUTONOMOUS OPERATION-ORIENTED ARCHITECTURE: NEEDS AND SOLUTIONS (5/5)

Decisions should aim at maximizing profits by limiting the risk for failures

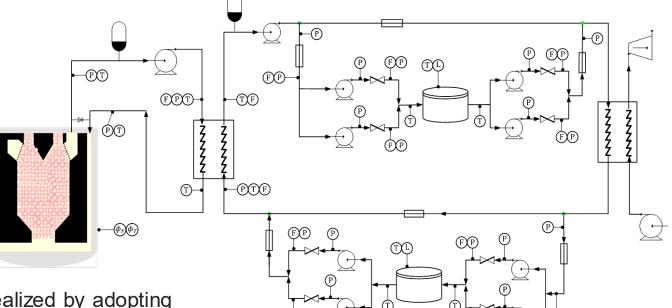

Identified SOLUTION: Diagnostics-informed Markov Decision Process (MDP)

- Generation Risk Assessment (GRA) evaluates the current system capacity capabilities, Probability Risk Assessment (PRA) evaluates the risk of not meeting the demand.
- Markov models developed for each component of the Intermediate Circuit.


U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Operating Plant

"Cost-Benefit Analyses through Integrated Online Monitoring and Diagnostics" (NEUP 19-17045)



APPLICATION OF PROPOSED ARCHITECTURE TO AN ADVANCED REACTOR DESIGN (1/4)

NEUP 20-19321 (ANL/UM/Kairos Power, 3 years, 1 M\$)

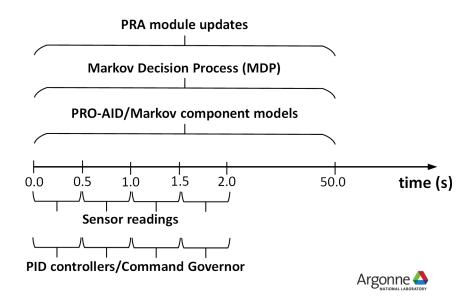
Selected system:

 Integrated energy system, i.e., a pebblebed fluoride saltcooled, high temperature reactor (KP-FHR) coupled with molten-salt thermal energy storage.

 High-fidelity simulator realized by adopting SAM (System Analysis Module) code.

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

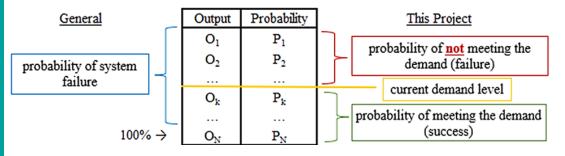
APPLICATION OF PROPOSED ARCHITECTURE TO AN ADVANCED REACTOR DESIGN (3/4)

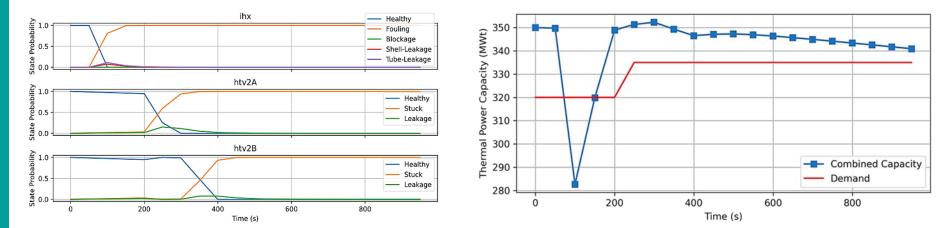

Definition of the Test-case scenario

12

- Performance degradation fault addressed via "compensation"
- Severe fault addressed via Operation Modes transition

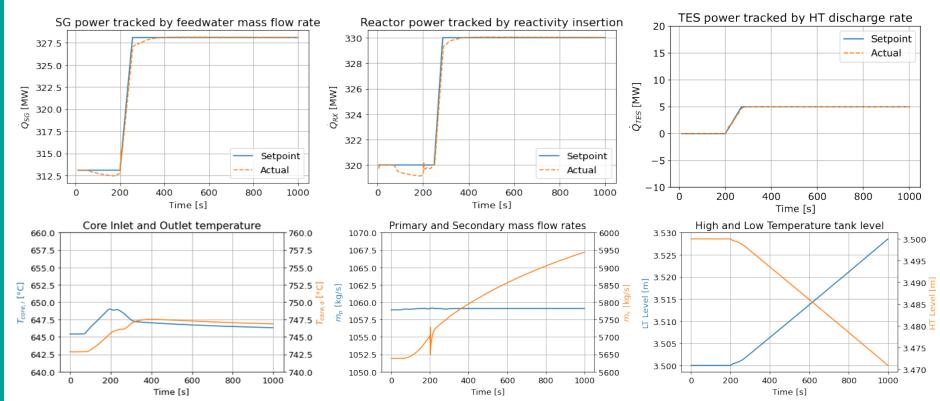
Stage Description
System is in "Load-Following" mode (constant reactor power, TES bypassed, constant load demand)
"IHX Fouling" detected
Compensation through Actuators
Load demand increase
MDP suggests switching to "Discharging" mode
"Double valve stuck" detected
MDP suggests transition to "Load-following" mode


 Control, diagnostics and decision-making algorithms characterized by characteristic time-scale.



APPLICATION OF PROPOSED ARCHITECTURE TO AN ADVANCED REACTOR DESIGN (3/4)

Test-case simulation results: Diagnostics, GRA and PRA analysis



- Addressing load fluctuations through "compensation" and/or transitions to different Operation Modes.
- Ensuring continuity of service while meeting constraints.

APPLICATION OF PROPOSED ARCHITECTURE TO AN ADVANCED REACTOR DESIGN (4/4)

Test-case simulation results: system dynamic response

