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Introduction

» Accurately capturing the power distribution within a reactor core is vital for
ensuring the safe and economical operation of the reactor.

* In boiling water reactors (BWRs), an array of Local Power Range
Monitors (LPRM) is used to measure the local flux distribution.

* Problems with this measurement process poses some major challenges:
- Lack of visibility into local power distribution when an LPRM is bypassed

- Incorrect or infrequent detector calibrations

- Premature or overdue replacement of LPRMs that have reached their end-of-life
- Inaccurate power adaption that has downstream effects on perceived margin to operating limits
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Introduction

* For the LPRM system, there is a vast amount of historical data
available — a) Processed signals from the LPRM detectors, and b)

the corresponding core state-points and the operating conditions of
the core.

* In this work, we utilize this data to develop two classes of deep
learning models to accurately predict the measured LPRM readings.

* One set of models are useful for real-time predictions, and the other
set of models for future offline predictions.




™

E9LUE WAVE

SIGNIFICANT OUTCOMES Al LABS

i Al Enabled Neutron Flux Measurement and Virtual Calibration
> ProjeCts in Boiling Water Reactors

L]
> LPRM .al A. Tungal. J. Heim!2, M. Mueterthies!, J. Thomas Gruenwald!, J. Nistor!'? *

'Blue Wave Al Labs, West Lafayette, Indiana

Ll
> TI P. al 2Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana
L]
» RUL.ai
ABSTRACT
> T h e rm a I L i m its a i Accurately capturing the three-dimensional power distribution within a reactor core is vital for en-
L] suring the safe and economical operation of the reactor, compliance with Technical Specifications,

and fuel-cycle planning (safety, control, and performance evaluation). Offline (that is, during cy-
cle planning and core design), a three-dimensional neutronics simulator is used to estimate the
reactor’s power, moderator, void, and flow distributions, from which margin to thermal limits and
fuel exposures can be approximated. Online, this is accomplished with a system of local power
range monitors (LPRMs) designed to capture enough neutron flux information to infer the full
nodal power distribution. Certain problems with this process, ranging from measurement and cal-
ibration to the power adaption process, pose challenges to operators and limit the ability to design
reload cores economically (e.g., engineering in insufficient margin or more margin than required).
> LPRM S ( Loca | Powe r Ra n ge M on |to rs) | n BW RS Artificial intelligence (Al) and machine learning (ML) are being used to solve the problems to re-
duce maintenance costs, improve the accuracy of online local power measurements, and decrease
the bias between offline and online power distributions, thereby leading to a greater ability to

i i i i design safe and economical reload cores. We present ML models trained from two deep neural

> Dynamlc threShOIdlng for LPRM trlp unlts (reduce the need to bypass an network (DNN) architectures, SurrogateNet and LPRMNet, that demonstrate a testing error of
LP R M 1.1% and 3.0%, respectively. Applications of these models can include virtual sensing capability

) for bypassed or malfunctioning LPRMs, on-demand virtual calibration of detectors between suc-

cessive calibrations, highly accurate nuclear end-of-life determinations for LPRMs, and reduced

» More accurate LPRM lifetime estimation (extend replacement intervals) RUL bias between measured and predicted power distributions within the cor.
» Virtual LPRMs for use when one is in BY/CAL mode (bypassed or being
calibrated)
» TIPs (Traversing In-core Probes)
» Trace Alignment
» Power Adaption
» Thermal Limits Models



NEUTRON FLUX MEASUREMENT IN BWR’S

TIP & LPRM Overview
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Geometry & Layout:

= LPRMs strings (4 fission chamber detectors) are installed
within instrument tubes in the core

= Large BWR core will have up to 43 strings (172 detectors)

= Replacement of one LPRM requires replacement of
entire string

= TIPs are periodically inserted (every few months) within
the TIP tube to produce 1-inch integrated power trace
along the entire length of active fuel

LPRM ARRANGEMENT
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RESULTS AND ACCOMPLISHMENTS

LPRM Modeling (virtual sensors)

= Surrogate LPRM Models
= |nput: LPRM String | Output: LPRM String
= |nput: Multiple LPRM Strings| Output: LPRM String

= Cycle Parameters Model

= Input: Nodal Power, Rod Variables, Core Flow, Core
Power, Thermal Power

= Qutput: Single LPRM Reading

= Most robust but complex model, requires block data
transfer

= Datainclude:
= Blade Nodal Depletion Ratio
" Calculated LPRM Readings (PANACEA)
" Core Dome Pressure
= Core Flow
= Core Inlet Subcooling
®* LPRM Gains
®= LPRM Rejected
®* LPRM Sensitivities
= Measured LPRM Readings
" Rod Pattern
®  Thermal Power
= Cycle Exposure
" LPRM Mapping
= Nodal Power

Utilized in Model:

Application

Real-time virtual readings
(dashboard),
Virtual calibration

~Real-time or future predictions,

Virtual calibration,
Anomaly detection

Scalar Features

3D Features

» Two Models
- SurrogateNet: A set of models using the readings of other
detectors. For accurate real-time predictions and virtual
readings.
- LPRMNet: A set of models using the core conditions and core
parameters (which are forecastable). For accurate offline and

Surrogate LPRMs

Cycle Parameters
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RESULTS AND ACCOMPLISHMENTS

Performance

Accuracy:

= Virtual LPRMs can predict actual LPRM readings to within +3% on average over all 172

detectors

- This represents 4x reductions in uncertainty from current state-of-practice

= This is with a model trained from 1 Reactor unit

= Currently expanding training set to several multi-unit generating stations

- This will drive down uncertainty even further

Reference
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PROJECT OVERVIEW

LPRM Monitoring Calibration, and EOL Determination Methodology

r

Objectives

Provide Virtual Measurements
»  Offline / bypassed LPRM readings (redundancy)
» Anomaly detection (early failure indication)
* Increased effective service life

Enable Virtual Calibration of LPRMs
» On-demand
»  Quick calibration for new LPRMs
» Improved nodal flux characterization

Improve RUL determinations & Replacement
Schedule

» Higher accuracy

» Reduce premature LPRM replacement

Streamline bookkeeping and workflow
» Easy review of detector history (interactive Ul)
» Visual insights (layout / heatmaps / graphs)
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Problem statement: The LPRMs are critical for monitoring the thermal

neutron flux within a boiling water reactor (BWR). Their reliability and accuracy are crucial
to accurately assess thermal limits and monitor the core. Problems include:

* Infrequent calibrations leading to periods of inaccurate readings

* Lack of visibility when an LPRM goes offline / bypassed

* Premature replacement due to inaccurate end-of-life (EOL) determination
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TIP

TIP Alignment Methodology and Flux Adaptation

s

Objectives

ML Detection of when auto alignment is
performed incorrectly
» Historical trace review for past few cycles
» Tool integration into customer process for
identification of issues going forward

Develop new methodology for high fidelity TIP
trace adaptation
» Train classifiers to more accurately adjust and
adapt TIP traces than the current state-of-
practice
» Correct misaligned traces

Detect other spurious TIP data for increased
visibility by Reactor Engineering
» Use to validate LPRM calibrations from TIP
traces
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Problem statement: Tthe auto TIP alignment feature (in

fuel vendor software) occasionally incorrectly shifts the local flux
profile (by more than a full node) resulting in higher thermal limits
(e.g. MFLPD). Higher thermal limits challenge operations due to
inadequate margin and may result in a power derate if a limit is

reached.
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TIP Measurement

TIP TRACE

TIP Trace
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Sources of Error:

1. Wrong identification of
spacer locations

2. "Slope Effect”.Small
changes in position
result in high changes
In count rate.



Unadjusted, symmetry: 0.01

04— 5tr?ng3
Improved Trace Alignment | ™™
. ® More accurate LPRM N
! calibrations “
| - Improved power adaption
l{, > Improved thermal limits / 1
\ margin 10 1
| 0 0 a0
_/"’v
' ' » Detection of anomalies

- Increased visibility for Reactor
Engineering

Current methods require physical recalibration every ~2 months
due to drift (degradation).

Determined TIP trace shift is sometimes much too large, and
adaption is discarded (vendor recommended to turn it off).

120 140

Adjusted, model3,
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Current methods require frequent LPRM recalibration via time-consuming
TIP Trace process, which is further prone to gross inaccuracies.

Adjusted, CMS symmetry: 0.19

| = string 3, shift =3
string 20, shift = -2

symmetry: 0.012

string 3, shift = -2
string 20, shift = -2
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Methodology for Thermal Limit Bias
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MANAGING THERMAL LIMIT BIAS Buue wave

= Bias between off-line and on-line thermal limits 0520
stems from the on-line feedback (adaption) applied  **
to the offline power distributions. oo
o:ooo-\ _ L
= Uncertainty in calculating nodal power distribution is s | ¥ L.
comparable to in-core instrumentation uncertainty. =
My EXCESSIVE MARGIN IS OVERSPENDING I | v
. . . . cpo bl i ® MFLPD (off-line) x .
e Core simulator inaccuracies lead to TL bias wlf = MFLPD (design) RN
g which can lead to overly conservative operation. o0 Ly " N N

n// Feedback from online
"‘ in-core instrumentation
(LPRM measurements)

4 i l Power
1 1 ) A\X \I Adaption

E X x x

[ —=—MLPR —=—MFLPD ——MAPRAT  ® TpRun & SegExch |
-8.000 | 1 |

Nodal Power Distribution Nodal Power Distribution 0 2000 4000 8000 8000

(SIMULATOR) (SIMULATOR + TIP/LPRM adaptive factors) Cyole Exposure (MWd/st 14
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MFLPD (Test performance)
1.05 Performance
—&— Online —&— Offline Model Predictions 9 TIP 4 Rod Movement Improvement:
1.00- » 72.4% reduction in mean
bias throughout cycle
0.954 » Mean nodal difference
' reduced from 2.04% to
1.16%
0.90 - » Max Bias reduced from
7.4% to 3.6%
0.854
0.804
0.75 b - .
Offline Metrics |[Model Metrics ¢ Training Set:
. ¢ q = S1C16
MSDIimit: 14.77 MSEIimit: 1.34 = = S1C19
0.65- BiaSqean: 3.44 BiaSqean: 0.95 = S1C20 (first GNF3 reload)
' BiaSmax: 7.37 BiaSmax: 3.63 = S2C12
= S2C13
0.60 1 0t X 4 X X AMAx WA A AAX A x 2 - 52C16
: ' I I I I I I I I = S2C17 (first GNF3 reload)
0 2k 4k 6k 8k 10k 12k 14k 16k

Cycle Exposure
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S1C17

MFLPD (Test performance)

1.05
—e— Online —&— Offline —&— Model Predictions % TIP 4 Rod Movement
1.004
0.95 -
0.90
0.85-
Max
Offline
0.80 Bias
0I75_ - - - ’
l Offline Metrics |[Model Metrics )
0.70+ MSDarray: 4.18 MSEarray: 1.65 [ ]
MSDIimit: 14.77 MSEIimit: 1.34
0.65 BiaSmean: 3.44 BiaSean: 0.95
. - . ) 1
BiaSmax: 7.37 [Biasmayx: 3.63 l\é?stOde\i
0.60 Im‘ 2 y N 3% ® IAAx | LA A | AAR A | ® |
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Performance
Improvement:

» 72.4% reduction in mean
bias throughout cycle

» Mean nodal difference
reduced from 2.04% to
1.16%

» Max Bias reduced from
7.4% to 3.6%

Training Set:

S+
S1C18
S1C19
S1C20 ( first GNF3 reload)

S2C12
S2C13
S2C16
S2C17 (first GNF3 reload)

]



ThermalLimits.ai AVOIDED COSTLY DERATE

Actual Event: Approaching thermal limits max within two weeks
= Runaway MFLPD at .975, Blue Wave model predicted .918

= Operators thought some LPRM'’s may be out of service or mis-
calibrated, but couldn’t quickly verify

= Blue Wave analyzed TIP traces and found some potential
poroblematic incl. an LPRM out of service

Without Intervention, a derate would be eventual course of action
= MLFPD getting worse, up to .975 (model predicted .92)

= Operator wanted Blue Wave to analyze ALL LPRMs..
ordering them from most-least problematic

= We showed 7 LPRMs with issues, bypass took it from .975 to .955

.we did, rank

Blue Wave predictions proven true and accurate

= Blue Wave suggested performing recalibration with TIP, based on
model predictions (still .92) ... After TIP the MFLPD went to .92!

= Blue Wave tools also helped address three related IRs
= This eventis being submitted for a Top Innovative Practice award

o
| mm%wwww

TIP run
Pt i MMMW 'y

A084
LPRM 24-33 AFLUX
7215 PWR

A060

LPRM 32-25 AFLUX
7418 PWR

A092

LPRM 40-33 A FLUX
67.39 PWR

A116
LPRM 32-41 AFLUX
61.04 PWR
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IN-CYCLE MANAGEMENT PLUE WAE

ThermalLimits.ai AVOIDED COSTLY DERATE AR R

Actual Event: Approaching thermal limits max Hﬂtﬂs
= Runaway MFLPD at .96, Blue Wave model [jrZE SR 55T 2413 |Bypassed, large offset prior to bypass
= Operators thought some LPRM's may be o e gl e I I i o R R oy e

Calibrated bUt COUldnlt C]UICkly verify 24-49 A - 48-25 A 718 .1 NDIS}I’
* Blue Wave analyzed TIP traces and found s | ISy NIPYRTIN 1826 |Fixed offset, not particurlarly drifting apart
poroblematic incl. an LPRM out of service
08-33 A - 32-09 A Large Drift

Without Intervention, a derate would be event Large Drift, Present in B and C levels to lessor
= MLFPD getting worse, up to .975 (model p extent

= Operator wanted Blue Wave to analyze AL Mndest Drift

SICEULISRUEIRICINIUENREERFIISIEINEIL (37 49A-48-33A | 1325 |Fixed offset, not paricuriarly drifing apart

= We showed 7 LPRMs with issues, bypass to Large Drift

Blue Wave predictions proven true and accura FiIBd offset, not particurlarly drifting apart

= Blue Wave suggested performing recalibrz Fixed offset, not particurlarly drifting apart

model predictions (still .92) ... After TIP the

= Blue Wave tools also helped address three Slgnrﬁcant Drift

= This eventis being submitted for a Top Inn iAo leed e DR T T
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= Universally, all models train very well

» However, certain features persist that "
are not effectively captured during
model training = This suggests some 7| [[ofine wewics ioder wetrics || [ e |
level of noise in the training targets ol e e Lo C12 ggg - Egg %

» Observation: Discrepancies between Ny e ] b, M s aera P M
online MFLPD and model begin witha . ° = =« = = W0 R
rod adjustment, but disappear with a e o o o % T A ] R —
subsequent TIP run

» This suggests a possible errant TIP '
trace (or subsequent LPRM mis- oss] §
calibration) in the vicinity of where
max MFLPD moves as a result of the “751  [offine Fietrics [Wiodel Wetrcs 251 | (o eties oder wetres
rod adjustment B701 D764 S 033 i T Premem S e 6an

oss|  [Bamer 391 [Biasmun: 052 C19 L P S C17
PN PR T PS B B e SR GRS S S

. 0 2k 4k 6k 8k 10k 1‘Zk 14k 16k
= BW Analysis

‘—O—Onhne —=— Offine —¢— Model Predictions % TIP 4 Rod Movement —e— Online —%— Offine —#— Model Predictions % TIP 4 Rod Movement
= Currently evaluating the TIP traces l
through BW alignment algorithm e Training Performan l
. . . . 0.90-] e e e g 31N
= With supporting evidence, will make a ' 4 *
determination whether to exclude | |
ROlIs from training population |
078 Offline Metrics [Model Metrics 71" | [offiine Metrics [Model Metrics
0.70 MSD,rayi 3.76  [MSE, 0y 1.44 0.70 MSD,ray: 4.18  [MSE,ray: 0.22
MSDjjmet 23.67 [MSEjme: 1.54 MSDimie:  14.77 Mﬁignmﬂ 0.74
oas | i paeiin | om0 R e rlll b C18
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% WRAP UP

Anomaly Detection
= Anomalies can be detected by tracking
the deviation A between virtual and
actual measurements
- Train a classifier to recognize normal
v. abnormal trending of A
-, Establish dynamic threshold for
flagging an anomaly
. This will lead to advanced warning
i ,+1 of whenan LPRM will alarm upscale

LPRM Forecasting

readings from cycle depletions

Use Cases (off-line)
» Reliable, accurate projections of LPRM = Thermal Limit bias closely
connected with LPRM and TIP

- Advanced warning when LPRMs will

alarm downscale due to planned
axial/radial power distributions

» Establish similar models for

forecasting LPRM exposures (SNVT)

from cycle depletions

- Accurate forecast for RUL based on

accuracy

r
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= Thermal Limit models in
conjunction with LPRM and TIP

' ordownscale expected operation through adeStmentS
' upcoming cycles (vs. average
' exposure attained from prior cycles)
Four Year Savings Total
Adoption Rate TIP.ai LPRM.ai ThermalLimits.ai

2023 5% $ 15,000.00 | $ - S 1,075,000.00 | $ 1,090,000.00
2024 30% $2,640,000.00 | $  3,240,000.00 | $ 10,320,000.00 | $16,200,000.00
2025 50% $4,400,000.00 | $ 5,400,000.00 [ $ 17,200,000.00 | $27,000,000.00
2026 65% $5,720,000.00 | $ 7,020,000.00 | S 22,360,000.00 | $35,100,000.00

Total $79,390,000.00

analysis prevent costly derates
and unanticipated rod

20
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