- T
U.S. DEPARTMENT OF OfflCe Of A — éﬁs El‘ e sensors
ENERGY  NucLEAR ENERGY [@&g@@ S

Advanced Controls - ANL

Advanced Sensors and Instrumentation (ASI)  PI: Richard B. Vilim; Co-PI: Haoyu Wang, Roberto Ponciroll

Annual Program Webinar
November 4, 6-7, 2024 Argonne National Laboratory




Project Overview

Research scope:

Develop an innovative approach for monitoring
and managing core performance for micro
reactors and advanced reactors.

CNN
ormal Operation)
@ Instrumented channels

> Obstructed channel

Develop power reconstruction techniques by comrol i
combining physics-informed machine learning, /,J L\
high-fidelity modeling and real-time ex-core

measurements, thereby reducing the

Sensors

Top: Convolution Neural

dependence on in-core detectors. Network temperature field
reconstruction
Demonstration in a university reactor (Purdue Left: Schematics showing

University Reactor Number One). Fuel Elements the ex-core sensors for
N reactor monitoring

Feedwater Inlet




Project Overview

Status of Project: 2"d year of 3-year plan

Plannin M4CT-24AN0704022: Definition of a strategy to develop a control scheme for Completed on tim
EY24 a 9 core thermal performance optimization (April 30, 2024) ompieted o e
Modeli M2CT-24AN0704023: Development of data-driven approach to core power C leted ti
oaeling distribution reconstruction in a nuclear reactor (September 30, 2024) ompieted on lime
. M3CT-25AN0704021: Complete the development of a High-fidelity neutron
MOde“ng transport and sensor response model (March 31, 2025) On Schedule
FY25 : . -
Algorithm M3CT-25AN0704022: Complete the development of scoring and optimization On Schedul
Development system to facilitate improved reactor control (September 30, 2025) n scheduie
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Demonstration

Participants:

* PI: Richard B. Vilim (ANL)
« Co-PIl: Haoyu Wang (ANL), Roberto Ponciroli (ANL), Tim Nguyen (ANL), Stylianos Chatzidakis

(Purdue University)
« Student: Vasileios Theos (Purdue University)



Technology Impact

- Traditional techniques for reconstructing the power distribution in Light Water Reactors need ~102
sensors placed at various positions within the core. This approach cannot be applied to Advanced
Reactors (harsh environment) and Microreactors (limited space).

« ANL-Purdue team aim to develop a highly adaptable method by integrating high-fidelity modeling
with data-driven techniques, thereby reducing the dependence on in-core sensors.

« This work paves a way for a non-intrusive core monitoring approach that only needs ex-core
sensors. It will enhance the reactor economic performance via the following benefits:

Reduced fuel cycle cost through improved fuel utilization and Improved outage scheduling by better predicting reactivity
loss over a cycle;

Increased energy production by recovering thermal margin; and
Increased radioisotope production efficiency



Results and Accomplishments

In FY24, the following items are accomplished by ANL-Purdue team:
1. High Fidelity model development of PUR-1 reactor in MCNP6 and OpenMC 0.15.0
2. Validation of neutronics models using neutron flux measured in PUR-1 reactor
3. Theoretical Formulation and Sensor requirements assessment




Results and Accomplishments: High-fidelity model development

PUR-1 reactor models in MCNP6 and OpenMC 0.15.0

Key components:

* 16 Fuel Assemblies (FAs) with 16
Dummy plates

* 3 Control Rods

» 20 Graphite Bricks constituting the
core reflector with 6 irradiation ports

Virtual sensors:

* 25 in-core sensors between FAs for
neutron flux

* 16 in-core sensors on Dummy
plates

e 26 out-core sensors for neutron flux
and neutron current

PUR-1 core

geometry in MCNP6. | |

x (cm)

PUR-1 OpenMC model.

Simulated Neutron Flux
Spatial Distribution.



Results and Accomplishments: Validation of neutronics models (1/3)

Neutron Activation Analysis (NAA) in PUR-1 core using Gold foils
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Results and Accomplishments: Validation of neutronics models (2/3)

Neutron Activation Analysis (NAA) in PUR-1 core using Gold foils

Gamma-ray spectrum from Au-198 beta decay
PUR-1, Irradiation port #F, z=28.5cm (Location #11)
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Results and Accomplishments: Validation of neutronics models (3/3)

Neutron flux (n/cmzs)

Neutron flux (n/cmzs)

Comparison between simulation results and collected neutron flux measurements in PUR-1 core
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Results and Accomplishments: Problem setting (1/2)

Theoretical formulation: Kirchhoff-Helmholtz (K-H) Integral Equation

Developed for acoustics applications, it could be used for neutron field reconstruction
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Results and Accomplishments: Problem setting (2/2)

« However, analytical solution of Green’s function may not exist for complicated geometry. 7 g 5
. . . l v
* The good news is, Green’s function can be represented by the parameters in CNN. N\, GEY
« With Green Function as the core of physics-informed machine learning, we don’t need to
interpolate within huge data set. It allows saving the computational burden and avoid the 6,3
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Configuration of the proposed CNNs during (Left) training and (Right) testing. Green’s function and Source spatial
distribution are defined by the weights/biases of the corresponding sets of “Fully-connected Layers” (outlined in red).




Concluding Remarks

In FY24, the following items are accomplished by ANL-Purdue team:

1. High Fidelity model development of PUR-1 reactor in MCNP6 and OpenMC 0.15.0
2. Validation of neutronics models using neutron flux measured in PUR-1 reactor

3. Theoretical Formulation and Sensor requirements assessment

In FY25, ANL-Purdue team will focus on:

1. Reconstruction algorithm development
a) Start with the development of Diffusion-based algorithm, and apply it to a 2D test case;
b) If the result is promising, we will improve it with Transport-based algorithm.

2. Further experimental validation of the neutronics model.




Concluding Remarks

Planned Presentations and Publications:

« “High-fidelity neutronic modeling for PUR-1 reactor with experimental validation”, Digital
Engineering Conference 2025, Idaho Falls, ID, May 20-21, 2025

« “Adata-driven approach to core power distribution reconstruction in a nuclear reactor”, 14th
International Topical Meeting on Nuclear Plant Instrumentation, Control & Human-Machine
Interface Technologies (NPIC&HMIT 2025), Chicago, IL, June 15-18, 2025

Richard B. Vilim Haoyu Wang Roberto Ponciroli
Department Manager - Plant Analysis & Principal Nuclear Engineer Principal Nuclear Engineer

Control & Sensors Plant Analysis & Control & Sensors Plant Analysis & Control & Sensors
Nuclear Science and Engineering Division  Nuclear Science and Engineering Division Nuclear Science and Engineering Division
Argonne National Laboratory Argonne National Laboratory Argonne National Laboratory
rvilim@anl.gov haoyuwang@anl.gov rponciroli@anl.gov

630-252-6998 630-252-1548 630-252-3455
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