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Goal: To develop and demonstrate advanced online monitoring to better manage

nuclear plant assets, operation, and maintenance
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Integrating condition monitoring, supply chain analytics, and decision making, we can

Improve asset-management for nuclear O&M
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Technology Impact

This research provides an integrated approach for long-term decision-making for plant
operation

Utilities would be better able to manage plant O&M

Minimize staffing levels with real financial impact.

The asset management analysis will support decision-making for
« SSCreplacement and asset management

 supply chain, resource availability, and outage planning

* license extension for long-term operation

By better accounting for obsolescence and replacement in financial decision-making,
utilities can optimize costs.

The proposed technology can be applied to different reactor designs or fuel cycle
applications.




The objective is to extract contact force at the radial key using neutron-noise data
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The interaction of the core-barrel and radial key is a feedback process.

We can link known vibration models with data to estimate the contact force model.
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Machine learning and Kalman filter approaches struggle

to estimate contact force behavior for a PWR'’s internals

Parameter Estlmates

Parameter Combinations that Perform Better-than-Average on RMSE, Likelihood, and Cross-Correlation Metrics
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The accuracy of each method’'s parameter estimates depends on the dataset

KF Ratioof ML | Ratio of KF

Parameter | Value | Estimate | Estimate | Est.to Truth | Est.to Truth

Casel o 100 268 487 |
B 10.0 5.18 70.6

Case2 a 31.6 164 480
B 316 10.0 69.7

Case3 «a 490 100 665 0.204 1.36
B 70.0 3.83 108 0.0547 1.54

Cased « 660 178 718 |0270 | 1.09 |
B 110 3.83 125 0.0348 | 1.14




Using deep reinforcement learning, we can train a decision-maker

to reduce overall costs
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Deep Reinforcement Learning (DRL):
« Two major components: ~ Go (Google DeepMind)
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Dota 2 (OpenAl)

 Environment
 Agent (decision-maker)
 Learns through trial-and-error

« Maximizes expected long-term reward




The circulating water system (CWS) pump

reliability and maintenance are the environment
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The generalized renewal process model fits

the repairable system data better than MTBF

Generalized Repair Process (GRP)
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The last part of the environment is creating

the observation vector, actions, and rewards

Observations Actions
Action | Maintenance Inventory
~ 1. Phase 1 Do nothing Do nothing
2. Degradation 2 Do nothing ~ Order spare
Component 5 3. Virtual age 3 Repair Do nothing
4. In_repair (flag) 4 Repair Order spare
— 5. In_replace (flag) 5 Replace Do nothing
— 6. Number of inventory 6 Replace  Order spare
Inventory 4 7. Leadtime Rewards
— 8. Inventory (flag)
— 9. In_outage (flag) Forgonerevenue = $3,127
Outage — 10. Time to next outage Hourly labor = $100
— 11. Time to startup Hourly materials = $333
Replacement cost = $500,000




A trained neural network model can react to changes in the component condition,
optimizing long-term rewards

53% cost reductionin
expected life-cycle cost

Expected Lifecycle Cost by Maintenance Strategy

DRL Agent 3 4 5 6 7
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Condition monitoring can be challenging, and success can be problem dependent.

Preliminary results for decision-making show that significant savings could be achieved.

Parameter Estimates
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