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Integrating condition monitoring, supply chain analytics, and decision making,

we can improve asset-management for nuclear O&M
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Technology Impact

The goal is an integrated approach for long-term decision-making for plant operation

Utilities would be better able to manage plant O&M

Minimize staffing levels with real financial impact.

The asset management analysis will support decision-making for
« SSC replacement and asset management

« supply chain, resource availability, and outage planning

« license extension for long-term operation

By better accounting for obsolescence and replacement in financial decision-making,
utilities can optimize costs.

The proposed technology can be applied to different reactor designs or fuel cycle
applications.




The inventory of upstream suppliers can be estimated

to reduce the uncertainty in available resources
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Bayesian networks can be trained to determine the likelinood of resource availability
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By measuring turbulence-induced vibrations using the ex-core sensors,

we can infer the condition of reactor vessel internals
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We combined physical laws and Bayesian network models to provide

a health estimate of structures, systems and components

Vibration response
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The generalized renewal process model fits

the repairable system data better than MTBF
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Using deep reinforcement learning, we can train

a decision-maker to reduce overall costs
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An agent was successfully trained to make maintenance and inventory decisions,

minimizing overall lifecycle costs
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The Al has already decided to replace the component when it ordered a spare.

Replacing is based on available inventory.
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Explainable Al helps us interpret why a certain decision

was made at particular point in time

Summary of Important Features for Month 51
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By modeling the environment and training an agent to make decisions,

we can lower overall lifecycle costs of the plant
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