

Office of **NUCLEAR ENERGY**

Advanced Sensors and Instrumentation

Advanced Sensors and Instrumentation (ASI) Program Overview

Advanced Sensors and Instrumentation (ASI) Program Annual Review Webinar Nov. 4, 6-7, 2024

Federal Program Manager: Daniel Nichols, PhD

U.S. Department of Energy, Office of Nuclear Energy

Administrative Items

The FY24 Advanced Sensors and Instrumentation (ASI) annual program review webinar will run 3 days: Nov. 4th, 6th, & 7th.

The program review contains presentations in the following categories:

- 18 Directed Research Projects
- 6 CINR Awards

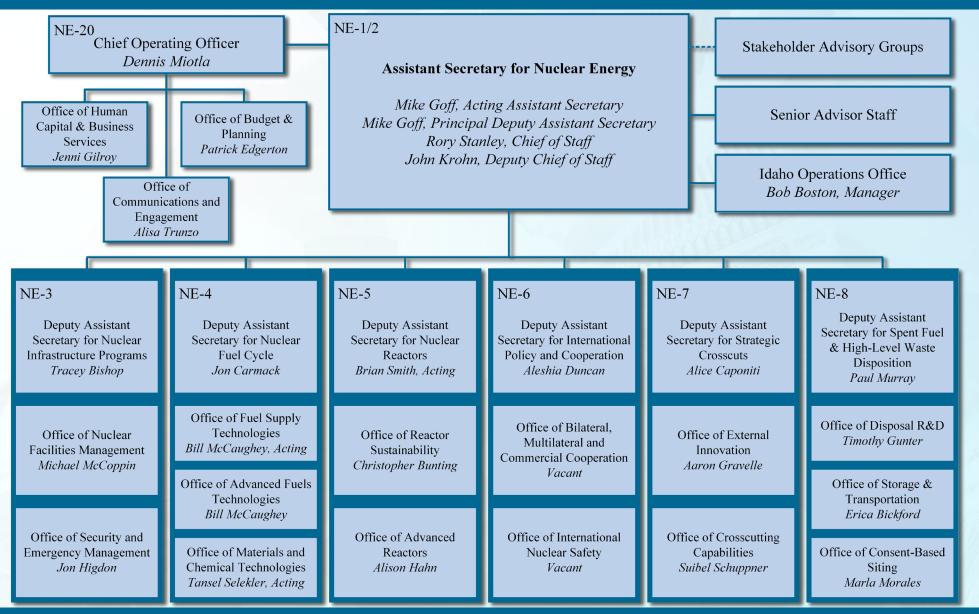
7 SBIR/STTR Awards

Goals:

Complete Annual Review of all ASI program projects

Provide broad programmatic information for stakeholders throughout NE industry Provide detailed project status presentations to inform NE community of progress

Expected Outcomes:


Allow for productive dialogue about ongoing work Ongoing projects gain visibility with NE industry stakeholders Receive feedback from NE community on the ASI program and projects

For webinar-related technical support, please contact Hyrum Ray: hyrum.wray@inl.gov -or- (208) 715-1449

5.	Advanced Sensors and Instrumentation	Meeting Agenda			
		Advanced Sensors and Instrumentation (ASI) FY24 Annual Program Review meeting			
onday, Nov	rember 4, 2024 roduction Mode	ators: Daniel Nichols (DOE)/Pattric	k Calderoni (INL)		
10:00 am	Welcome, Opening Remarks, and ASI Program O	verview Suibe	el Schuppner, DOE		
10:10 am	ASI Program Overview	Da	niel Nichols, DOE		
10:30 am	ASI FY25 Plan	Patte	ick Calderoni, INL		
10:50 am	Final Report on AI/ML Research	Sergi	a Basturescu, NRC		
ssion 2: Ser	asors for Advanced Reactors	Moderator: C	hris Petrie, ORNL		
11:10 am	Reactor Power Monitoring - INL	Kevin Tsai/Tom	my Holschuh, INL		
11:40 am	Reactor Power Monitoring - ORNL	Callie Goetz/	Tony Birri, ORNL		
12:10 pm	Break				
12:40 pm	Material Properties (Strain Gauges)	Am	ey Khanolkar, INL		
1:00 pm	An Innovative Monitoring Technology for the Re		right, Texas A&M		
1:20 pm	Radiation-Hardened Electronics - ORNL	Di	anne Ezell, ORNL		
1:40 pm	Communication	Vivek Agarwal/	Imtiaz Nasim, INL		
2:00 pm	Secure Wireless Mesh Networking for Nuclear Se	nsing Roger Jungerman,	Operant Networks		
2:20 pm	Gallium Nitride-based 100-Mrad Electronics Technology for Advanced Nuclear Reactor Wireless Communications Kyle Reed, ORNL				
2:40 pm		Lunch			
3:10 pm	Structural Health Monitoring - INL	Josh Daw/Da	n Deng, INL/BSU		
3:40 pm	Structural Health Monitoring - PNNL	Bill Glass/V	ineet Joshi, PNNL		
4:10 pm	Ultrasonic Multipoint Temperature Sensor for Nu	clear Reactor Application D	an Xiang, X-Wave		
4:30 pm					

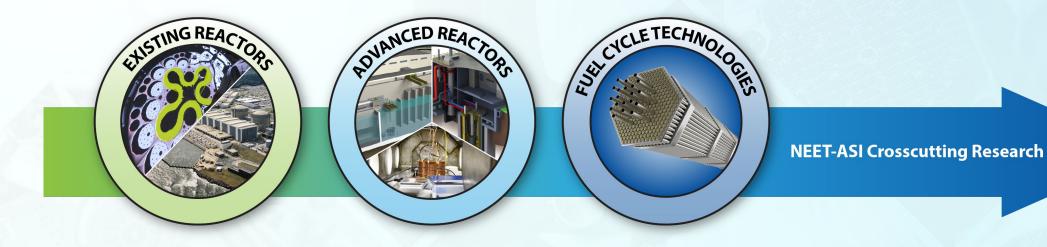
*All Times are Eastern Daylight Time (UTC - 04:00)

Structure of the Office of Nuclear Energy

3

Advanced Sensors and Instrumentation Leadership

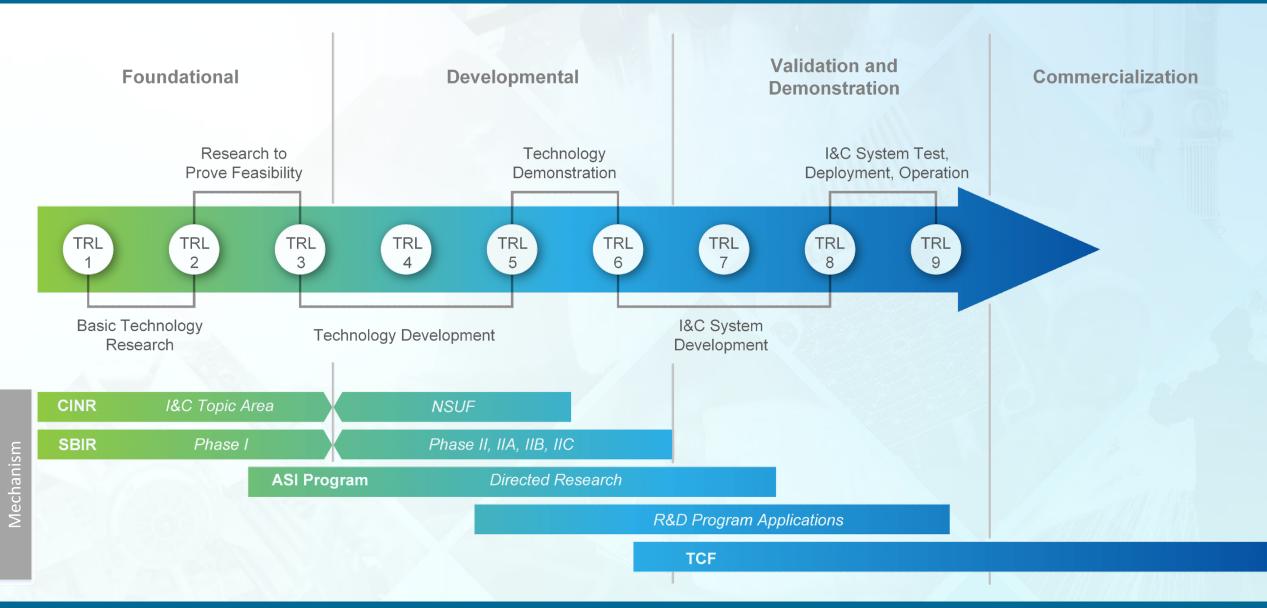
Federal Program Manager: Daniel Nichols <u>daniel.nichols@nuclear.energy.gov</u> National Technical Director: Pattrick Calderoni pattrick.calderoni@inl.gov

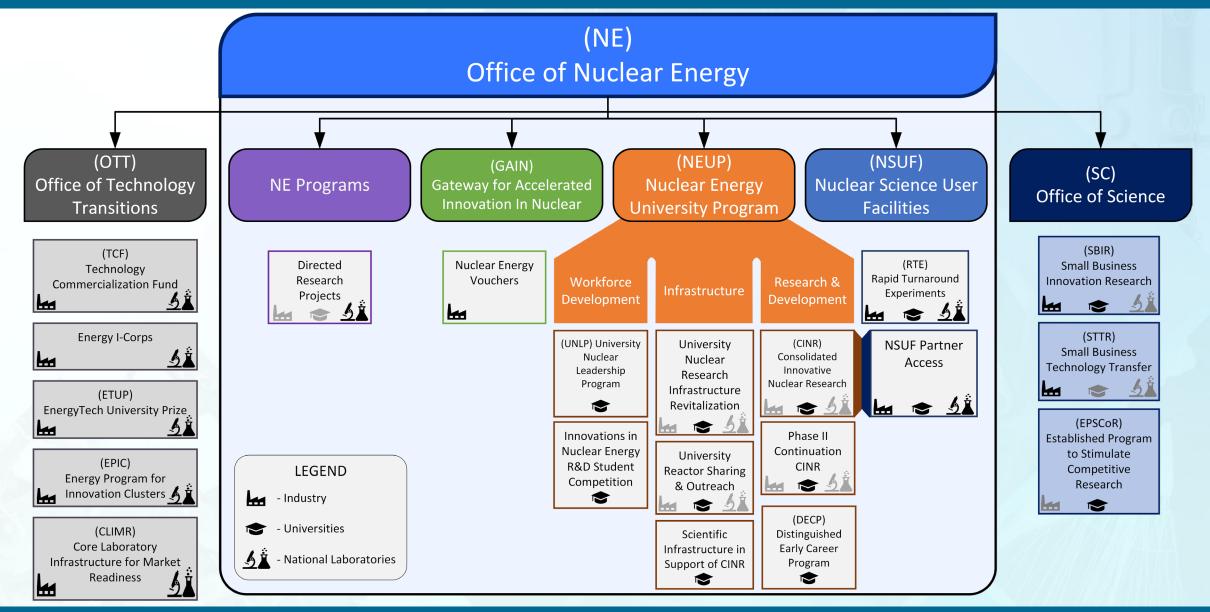

ASI Program Focus

Mission

Develop <u>advanced sensors and I&C</u> that address critical technology gaps for monitoring and controlling existing and advanced reactors and supporting fuel cycle development

Vision


NEET ASI Research results in advanced sensors and I&C technologies that are <u>qualified</u>, <u>validated</u>, <u>and ready to be</u> <u>adopted</u> by the nuclear industry


ASI R&D Components

Methods and Metrics of ASI Research

NE R&D Funding Map

Program-related Funding Opportunities

Consolidated **Innovative Nuclear** Research (CINR)

$\square \bigcirc$ Universities

Principal Investigator/Sub-awardee for:

- Integrated Research Projects (IRP)
- Research & Development (R&D)
- **Nuclear Science User Facility** (NSUF) access only

Engage and collaborate with a small business to commercialize the technology

Research & Development (R&D) Engage and collaborate with a small business to commercialize

the technology

Sub-awardee for:

(IRP)

for:

Lead R&D efforts as the **Principal Investigator**

Principal Investigator/Sub-awardee

Nuclear Science User Facility

Integrated Research Projects

(NSUF) access only

Industry

Principal Investigator/Sub-awardee for:

Nuclear Science User Facility (NSUF) access only

Sub-awardee for:

- Integrated Research Projects (IRP)
- Research & Development (R&D)

Lead the commercialization effort as the Principal Investigator

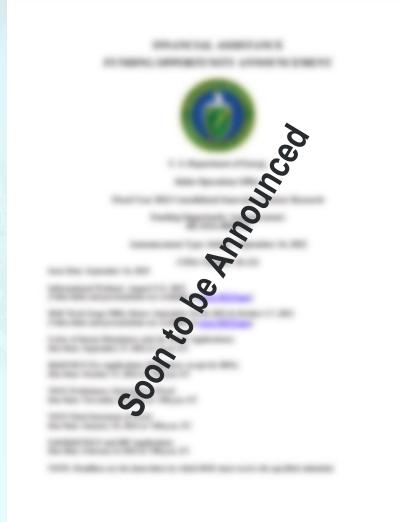
Collaborate with National Laboratory as a subcontractor

Small Business Innovation Research (SBIR) & Small **Business Technology** Transfer (STTR) programs

Directed Research

Collaborate with National Laboratory as a subcontractor

Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR)



SBIR and STTR focus on industry-led projects with the intent to advance technologies to commercialization

Key Upcoming Dates:

Topic Issues	Nov. 12, 2024
Topic Webinar	Nov. 18, 2024 (tent.)
FOA issued	Dec. 16, 2024
FOA Webinar	Dec. 19, 2024 (tent.)
Letters of Intent	Jan. 7, 2025
Full Applications	Fed. 26, 2025

For more information about the DOE SBIR/STTR FOA, visit: <u>https://science.osti.gov/sbir/Funding-Opportunities</u> For more general SBIR/STTR information, visit: <u>https://www.sbir.gov/</u>

Active SBIR/STTR Awards (ASI related work)

			Concluding			
Subtopic	Phase	Institution	Location	Fiscal Year	PI	Title
29d	I	Innoveyda	Lake Forest, CA	2025	Indu Saxena	Extreme Temperature Transducer for Enabling Ultrasonic Flowmetry
29d	I	Intelligent Optical Systems, Inc.	Torrance, CA	2025	Bradley Bobbs	In-Reactor Laser Ultrasonic Sensor for Fuel Rod Pressure and Fission Gas
37a	IIB	Intelligent Optical Systems, Inc.	Torrance, CA	2026	Bradley Bobbs	Advanced Laser Ultrasonic Sensor for Fuel Rod Characterization
33a	IIB	Alphacore Inc	Tempe, AZ	2025	Esko Mikkola	Video Camera for Harsh Environments in Nuclear

Other Industry-relevant FOAs

Gateway for Accelerated Innovation in Nuclear (GAIN) Vouchers for FY2024:

Round 1 – Applications due Oct. 31, 2024 (5:00pm EST) Round 2 – Applications due Jan. 31, 2025 (5:00pm EST) Round 3 – Applications due Apr. 30, 2025 (5:00pm EST) Round 4 – Applications due Jul. 31, 2025 (5:00pm EST)

More information about both FOAs can be found of the GAIN website: gain.inl.gov #GAINAccess 💻

The U.S. Department of Energy's Office of Nuclear Energy established the GAIN initiative to provide the nuclear community with access to the technical, regulatory, and financial support necessary to move innovative technologies toward commercialization.

The NE Voucher Program is one way to provide industry with access to the unique research capabilities and expertise at DOE's national labs.

Consolidated Innovative Nuclear Research (CINR)

Consolidated Innovative Nuclear Research (CINR) holds various opportunities:

1) U.S. University-led R&D Projects

2) U.S. University-led Integrated Research Projects (IRPs)

3) U.S. University-, National Laboratory-, or Industry-led Nuclear Science User Facilities (NSUF) Access Only Projects

Key Upcoming Dates:

Full R&D/NSUF and IRP Applications Due Date	November 13, 2024, at 5:00 p.m. ET	
Planned Award Announcement Date	March 6, 2025	

For more information visit the NEUP website:

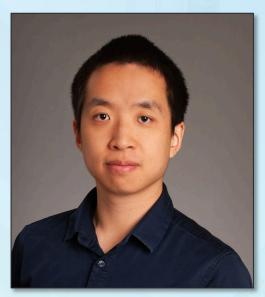
neup.inl.gov/open-funding-opportunities/

U. S. Department of Energy Idaho Operations Office

Fiscal Year 2025 Consolidated Innovative Nuclear Research

Funding Opportunity Announcement: DE-FOA-0003309 Announcement Type: Initial – May 20, 2024 Amendment 001: June 17, 2024 Amendment 002: October 16, 2024 Assistance Listings Number 81.121

Informational Webinar (Video links and presentations are available at www.NEUP.gov)	May 9, 2024
Issue Date	May 20, 2024
DOE Topic Area Program Manager Q&A (Video links and presentations are available at www.NEUP.gov)	May 28-30, 2024
Letter of Intent (Mandatory only for NSUF-1 and NSUF-2 Applications) Due Date	June 5, 2024, at 5:00 p.m. ET
R&D/NSUF Pre-Applications (Mandatory except for IRPs) Due Date	June 26, 2024, at 5:00 p.m. ET
NSUF Pre-application Statement of Work Due Date	August 01, 2024, at 5:00 p.m. ET
NSUF Full Application Statement of Work Due Date	October 30, 2024, at 5:00 p.m. ET
Full R&D/NSUF and IRP Applications Due Date	November 13, 2024, at 5:00 p.m. ET
Planned Award Announcement Date	March 6, 2025


NOTE: Deadlines are the dates/times by which DOE must receive the specified submittal.

FY24 CINR Recipient for Workscope Topic Area 9: Measuring, Monitoring and Controls

Project Title: Magnetostrictive Guided-wave Transducers for Nuclear Reactor Piping System Monitoring

Principal Investigator: Dr. Zhangxian (Dan) Deng (Boise State University)

Summary: This project aims to develop a novel magnetostrictive guided-wave structural health monitoring system for nuclear reactor piping to enable continuous, condition-based monitoring and reduce maintenance costs. Our team will focus on using Galfenol, an iron-gallium alloy known for its high-temperature and radiation resistance, for ultrasonic transducers development. The project's objectives include directly printing Galfenol onto stainless steel to simplify sensor integration, creating a comprehensive SHM system with user-friendly interfaces, and validating system performance under extreme conditions at the Ohio State University's research reactor. Success in this endeavor is expected to improve damage prognosis, reduce operational costs, and enhance safety in nuclear reactors.

Project Period: 8/1/2024 – 07/30/2027

FY24 CINR Recipient for Workscope Topic Area 9: Measuring, Monitoring and Controls

Project Title: Monitoring Ceramic Fuel Fracture via Fiber Optic Acoustic Emission Sensors

Principal Investigator: Dr. Gary Pickrell (Virginia Polytechnic Institute and State University)

Summary: In this program, the Center for Photonics Technology (CPT) at Virginia Tech will collaborate with Sentek Instrument and Idaho National Laboratory (INL) to develop and demonstrate a distributed acoustic emission (AE) sensing system for in-situ monitoring of ceramic fuel fracture and structural components in nuclear power plants. The proposed monitoring system leverages a proven fiber optic technique to interrogate hundreds of grating-based distributed interferometers inscribed in best-in-class radiation tolerant single mode optical to fiber to obtain ultra-sensitive vibration measurements that can be configured with high spatial resolution and sampling rates. The relatively small diameter optical fiber will be wrapped around the DRIFT (Dry in-pile fracture test) stainless steel insert assembly to obtain at least 20 sensor measurements with an approximate spatial resolution of 2.5 mm along the plane parallel to the centerline of the uranium oxide pellet stack. Laboratory scale testing will be performed at VT to optimize the sensor configuration and demonstrate performance of the prototype sensing system using a surrogate fuel material. The program will culminate with the integration of the prototype sensing system at a selected test reactor facility.

Project Period: 8/1/2024 – 07/30/2027

FY24 CINR Recipient for Workscope Topic Area 10: Licensing, Safety, and Security

Project Title: Inference of flow conditions from in-core detector measurements for accelerating SMR licensing

Principal Investigator: Dr. Benoit Forget (Massachusetts Institute of Technology)

Summary: Reactor modelling relies on the detailed description of reactor systems but often lacks the true as-built characteristics of a system and cannot realistically model impactful details a priori. This lack of knowledge can lead to large discrepancies between the observables and modelling and simulation predictions, and in real production system there is often insufficient instrumentation and access to correct this lack of information. This proposal aims to use all the information available between measurements and simulations to infer key knowledge gaps. A demonstration of this insufficiency will be performed on the low power physics tests of the BEAVRS benchmark where a significant tilt is observed in the initial core hypothesize to be due to fuel bowing. For fresh fuel, the largest contribution to fuel bowing comes from hydraulic forces caused by the inlet flow. Many studies have demonstrated that core inlet flow is often non-uniform during the unfortunate symmetrical design of the cold and hot leg nozzles, which induces a non-symmetrical flow distribution which is impacted by the pumps start up sequence and can further lead to unstable flow switching referred to as "lower plenum flow anomaly" (LPFA). The goal of this proposal is to develop a framework that can learn from all of the reactor information available (like detector signals) and apply it to our demonstration problem to identify fuel bowing distribution and flow disparities in the as-built conditions. The framework will also provide support to the NuScale SMR where accurate inlet flow conditions can be very important in defining margins to critical heat flux.

Project Period: 8/1/2024 – 07/30/2027

Collaborators:

Emilio Baglietto Associate Department Head and Professor of Nuclear Science and Engineering

Majdi Radaideh (RAD) Assistant Professor

Kent Welter NuScale – Chief Engineer, Testing & Analysis

Jason Christensen Idaho National Laboratory - Senior Regulatory Engineer

16

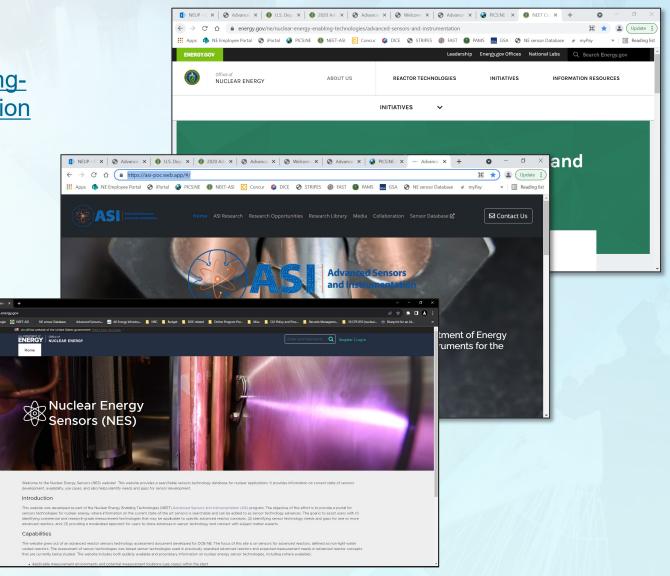
FY24 CINR Recipient for Workscope Topic Area 10: Licensing, Safety, and Security

Project Title: Non-Destructive Plutonium Assay in Pyroprocessing Bulk Materials with a 3D Boron-Coated-Straw Detector Array

Principal Investigator: Dr. Angela Di Fulvio (University of Illinois at Urbana-Champaign)

Summary: The once-through fuel cycle adopted in the U.S. does not include reprocessing or recycling of used fuel and leads to inefficient utilization of nuclear fuel, generating a significant volume of high-level waste. Advanced separation technologies have the potential to address these challenges and enable commercially viable reprocessing of used nuclear fuel from the current light-water reactor fleet. Among the most mature of these separation methods is pyroprocessing, which dissolves metal-based spent fuel in a molten-salt bath and minimizes the proliferation risk because it does not produce a pure plutonium stream. This project aims to further enhance the proliferation resistance of pyroprocessing by accurately assessing plutonium content during the process. The strategy involves developing and demonstrating a novel 3D boron-coated-straw neutron detector array (3D-BCSDA) with high efficiency and spatial resolution. While several destructive assay methods have been developed for nuclear material accountability, an NDA system specific to the assessment of bulk materials, including the ability to withstand harsh pyroprocessing environments and account for the fuel form factor, is not available. We will develop the 3D-BCSDA to fill this technology gap. The 3D-BCSDA will offer exceptional gamma-ray rejection for spent-fuel assay, threedimensional neutron detection for tomographic sample imaging, and sample-dependent multiplicity assay. The anticipated innovations are poised to enhance plutonium assay precision by approximately 60% in bulky plutonium-bearing samples in pyroprocessing.

Project Period: 8/1/2024 – 07/30/2027


ASI Program Resources

Visit the DOE-NE website:

https://www.energy.gov/ne/nuclear-energy-enablingtechnologies/advanced-sensors-and-instrumentation

Checkout the new ASI website: <u>asi.inl.gov</u>

Visit the Nuclear Energy Sensor Database: <u>https://nes.energy.gov</u>

Concluding Remarks

- Improvements and advancements in ASI technologies will
 - enable advances in nuclear reactor and fuel cycle system development
 - enhance economic competitiveness for nuclear power plants, and
 - promote a high level of nuclear safety
- NEET-ASI research produces concepts, techniques, capabilities, and equipment that are or can be demonstrated in simulated or laboratory test bed environments representative of nuclear plant systems or fuel cycle systems
- Innovative and crosscutting research is funded through competitive, peer-reviewed, solicitations and directed work

Daniel M. Nichols, PhD

Federal Program Manager | Advanced Sensors and Instrumentation [NE - 72] United States Department of Energy | Office of Nuclear Energy Email: <u>daniel.nichols@nuclear.energy.gov</u> Time Zone: EST (UTC - 05:00) Advanced I&C technologies are an integral component for advanced reactors to provide safe, clean, and reliable power

Office of **NUCLEAR ENERGY**

Advanced Sensors and Instrumentation

Thank You

