

Office of **NUCLEAR ENERGY**

Advanced Sensors and Instrumentation

An Innovative Monitoring Technology for Reactor Vessel of Micro-HTGR

Advanced Sensors and Instrumentation (ASI) Annual Program Webinar October 24 – 27, 2022

PI: Lesley Wright, Texas A&M University, Mechanical Engineering Collaborators: Penn State, ANL, BWXT

Project Overview

Develop & Demonstrate Integrated Sensor Technology for Real-Time Monitoring of Thermal-Mechanical Stresses of Reactor Vessel for Micro-High Temperature Gas Reactors (mHTGRs)

- 1. Real-Time, Reliable, and Cost-Effective Monitoring Methodology
- 2. Quantification of the Lifetime and Integrity of the Pressure Vessel
- 3. Improve the Economics of MicroReactor Systems

Project Overview – Schedule and Milestones

	202		2023							2024									2025												
	10 11	12	1	2 3	34	5	6 7	8	9	10 1	1 12	1	2	3 4	5	6	7	8 9) 1	0 11	12	1	2	3	4 5	6	7	8	9 1	0 1 [.]	1 12
Literature Review and Data Collection																															
Experimental Tasks																															
Selection and Preliminary Testing of Potential Sensors																															
Modification and Validation of Existing Experimental Facility																															
Testing of Discrete Temperature and Stress Sensors for Validation of Reconstruction and Monitoring																															
Field Reconstruction and Monitoring Tasks																															
Modification and Optimization of the Algorithms																															
Deployment																															
Major Milestones	Major Milestones						Preliminary Development of Algorithms for Field Reconstruction and Monitoring						Preliminary Assessment of Performance of Proposed Methodology						Complet Developme Algorithms f Reconstruct Monitor						ed Int of or Field ion and ing					Fi	T inal I

Project Overview - Participants

Texas A&M University

- Laboratory Testing for Simulation and CNN Validation
 - o Lesley Wright, Mechanical Engineering
 - Rodolfo Vaghetto, Nuclear Engineering

Penn State University

- Numerical Simulations and Algorithms
 - Elia Merzari, Nuclear Engineering

Argonne National Laboratory

- Machine Learning Algorithms and Capabilities
 - Roberto Ponciroli
 - o Lander Ibarra

BWXT, Inc.

- Industry Perspective
 - o Erik Nygaard

- Hanlin Wang, PhD Candidate Mechanical Engineering
- Pramatha Bhat, MS Student, Nuclear Engineering

Victor Coppo Leite, PhD Nuclear Engineering
Luiz Aldeia Machado, PhD Candidate, Nuclear Engineering

Technology Impact

We will develop & demonstrate integrated sensor technology for real-time monitoring of thermalmechanical stresses of reactor vessel for micro-high temperature gas reactors (mHTGRs).

- Development of a novel combined software/hardware sensing technology capable of monitoring the health of reactor components.
 - Field reconstruction algorithm tuned for vessel temperature and stress predictions
 - Methods to optimize sensor locations
- Creation of a credible pathway for an innovative measurement system for a key component of gascooled micro-reactors (i.e., the pressure vessel). This will allow industry to assess the viability of the technology to realize economic benefits.
- The proposed method removes the need for penetrations through the pressure boundaries and is suitable for other advanced micro-reactors technologies.
- Development of a tool to facilitate the fault diagnostics with a measurement procedure than is less
 invasive than the current state-of-the- art sensor placement strategies.
 - Integration of reconstruction algorithm with an ACTUAL sensor array and assessment of its accuracy
 - Demonstration on realistic HTGR applications

Results and Accomplishments – Project Accomplishments

Experimental Testing

- Existing experimental facility modified and brought to operational
 - Radiant heating of reactor vessel model
 - o Outer surface instrumented with thermocouple array
 - Benchtop testing of high temperature strain gauges is on-going

Numerical Simulations

- Preliminary CFD simulations have been completed
 - Validation of ray tracing algorithms
 - 3D simulations of TAMU experimental vessel
- Application and Customization of the Convolutional Neural Network (CNN) Approach
 - CNN has demonstrated promising performance with the numerical datasets

Results and Accomplishments – Experimental Validation

Heater Thickness

Results and Accomplishments – Experimental Validation

Results and Accomplishments – Experimental Validation

- Strain Gauge Testing
 - HBK (Hottinger Bruel, and Kjaer) nickel-chrome alloy gauges
 - HPI (Hitec Products, Inc.) high temperature strain gauges

- Heat Flux Gauge Selection
 - Huskeflux IHF01 and IHF02 heat flux gauges
 - FluxTeq HTHFS gauges for extreme environments (rated to 1000C)

Results and Accomplishments – Numerical Simulations

- Radiative Heat Transfer using MOOSE Framework
 - Mulitphysics Object Oriented Simulation Environment (MOOSE) Developed at Idaho National Laboratory (INL)

 $\circ\,$ Ray Tracing and Heat Conduction Modules

	Net Radiation Method
Heat Flux	$q_r''(\vec{x}) = J(\vec{x}) - H(\vec{x})$
Radiosity	$J(\vec{x}) = \epsilon(\vec{x})\sigma T^4 + (1 - \epsilon(\vec{x}))H(\vec{x})$ $J_i = \epsilon_i \sigma T_i^4 + (1 - \epsilon_i)H_i$
Irradiation	$H_i = \sum_{j=1}^n F_{ij} J_j$
Heat Flux	$q_i^{\prime\prime} = \sum_{j=1}^n \left(\delta_{ij} - F_{ij}\right) J_j$
	$\sum_{j=1}^n \left(\delta_{ij} - F_{ij}\right) J_j = 0$
	$\sum_{j=1}^n \left(\delta_{ij} - (1-\epsilon_i)F_{ij})J_j = \epsilon_i \sigma T_i^4\right)$

Results and Accomplishments – Numerical Simulations

Results and Accomplishments – Numerical Simulations

Non-uniform Heating

Uniform Heater Temperatures

Non-uniform Heating (600°C Setpoint)

Results and Accomplishments – CNN Algorithm Development

- Develop a CNN Model to Reconstruct Temperature Fields
- Couple Tensor Mechanics Module of MOOSE with CFD Predications to Assess Thermal-Mechanical Stresses within the Vessel
- Determine if the Inferred Temperature Distribution Represents Normal or Degraded Operating Temperatures
- PRO-AID Will Be Leveraged for Diagnostic Capabilities
- Technology Will Provide
 - Real-time, cost-effective monitoring system
 - Quantification of the lifetime and integrity of the pressure vessel
 - Means to improve the economics of the microreactor system

Results and Accomplishments – CNN Algorithm Development

Modified Configuration of the CNN

Dense layer #1

Autoencoder Layer

Concluding Remarks

Experimental Testing

- o Vessel model was put into operation and instrumented with a thermocouple array
- Temperature distributions were obtained under several heating conditions
- Installation of benchmarked strain gauges and further testing of heat flux gauges

Numerical Simulations

- Preliminary CFD simulations have been carried out including MOOSE's Ray Tracing Module
- Excellent agreement with initial testing at TAMU
- Initial training of CNN using preliminary results
- Continue to generate simulated data sets for CNN training

CNN Algorithm Development

- o CNN has so far demonstrated promising performance with the numerical datasets
- Preliminary CNN for diagnostics has been proposed
- Validation of the proposed algorithm is underway

Lesley Wright Lesley_Wright@TAMU.EDU

Publications

[1] Victor Coppo Leite (Penn State), April Novak (ANL), Elia Merzari (Penn State), Roberto Ponciroli (ANL), Lander Ibarra (ANL), "Application of a Physics-Informed Convolutional Neural Network for Monitoring the Temperature Field in Advanced Reactors", Proceedings of NURETH-20, Washington, DC, August 2023.

Office of **NUCLEAR ENERGY**

Advanced Sensors and Instrumentation

Thank You

