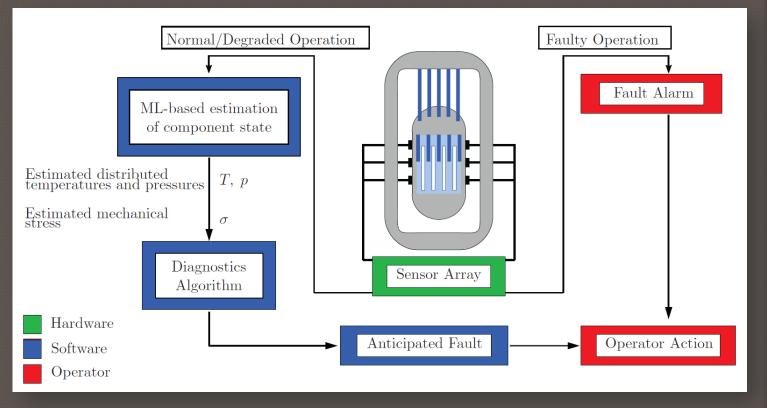
An Innovative Monitoring Technology for Reactor Vessel of Micro-HTGR

Lesley Wright Rodolfo Vaghetto	Texas A&M University Texas Engineering Experiment Station College Station, Texas	TEXAS A&M				
Elia Merzari	Pennsylvania State University State College, Pennsylvania	PennState				
Lander Ibarra Roberto Ponciroli	Argonne National Laboratory Lemont, Illinois	Argonne Argonational Laboratory				
Erik Nygaard	BWX Technologies, Inc. (BWXT) Lynchburg, Virginia	BWX Technologies, Inc.				
Advanced Sensors and Instrumentation (ASI) Annual Program Webinar						


November 4, 6-7, 2024

Project Overview

TEXAS A&M UNIVERSITY

Develop & Demonstrate Integrated Sensor Technology for Real-Time Monitoring of Thermal-Mechanical Stresses of Reactor Vessel for Micro-High Temperature Gas Reactors (mHTGRs)

- 1. Real-Time, Reliable, and Cost-Effective Monitoring Methodology
- 2. Quantification of the Lifetime and Integrity of the Pressure Vessel
- 3. Improve the Economics of MicroReactor Systems

Project Overview

TEXAS A&M UNIVERSITY

Schedule and Milestones

	20	2022 2023		2024										2025																	
	10 1	1 12	2 1	2	3 4	5	6	78	39	10	11 12	1	2	34	5	6	7 8	B 9	9 10) 11	12	1	2	3	4 5	5 6	5 7	8	9 1	01	1 12
Literature Review and Data Collection																															
Experimental Tasks																															
Selection and Preliminary Testing of Potential Sensors																															
Modification and Validation of Existing Experimental Facility																															
Testing of Discrete Temperature and Stress Sensors for Validation of Reconstruction and Monitoring																															
Field Reconstruction and Monitoring Tasks																															
Modification and Optimization of the Algorithms																															
Deployment																															
Major Milestones						Igor)evelo rithm: nstru	s for	ent r Fie on a	of eld nd		P	Asses Perfo Pro	rmar opos	ent o nce o	-			Al	Deve gorii econ	elop thm stru	olete omer os fo uctic torin	nt of r Fie on ai	eld						F	inal R

4

Project Overview

Participants

Texas A&M University

- Laboratory Testing for Simulation and CNN Validation
 - Lesley Wright, Mechanical Engineering
 - o Rodolfo Vaghetto, Nuclear Engineering

Penn State University

- Numerical Simulations and Algorithms
 - Elia Merzari, Nuclear Engineering

Argonne National Laboratory

- Machine Learning Algorithms and Capabilities
 - o Roberto Ponciroli
 - o Lander Ibarra

• BWXT, Inc.

- Industry Perspective
 - o Erik Nygaard

• Pramatha Bhat, PhD Candidate, Nuclear Engineering

- Hanlin Wang, PhD Candidate Mechanical Engineering
- Victor Coppo Leite, PhD Nuclear Engineering
 Luiz Aldeia Machado, PhD Candidate, Nuclear Engineering

TEXAS A&M UNIVERSITY

Technology Impact

We will develop & demonstrate integrated sensor technology for real-time monitoring of thermalmechanical stresses of reactor vessel for micro-high temperature gas reactors (mHTGRs).

- Development of a novel combined software/hardware sensing technology capable of monitoring the health of reactor components.
 - Field reconstruction algorithm tuned for vessel temperature and stress predictions
 - Methods to optimize sensor locations
- Creation of a credible pathway for an innovative measurement system for a key component of gascooled micro-reactors (i.e., the pressure vessel). This will allow industry to assess the viability of the technology to realize economic benefits.
- The proposed method removes the need for penetrations through the pressure boundaries and is suitable for other advanced micro-reactors technologies.
- Development of a tool to facilitate the fault diagnostics with a measurement procedure than is less invasive than the current state-of-the- art sensor placement strategies.

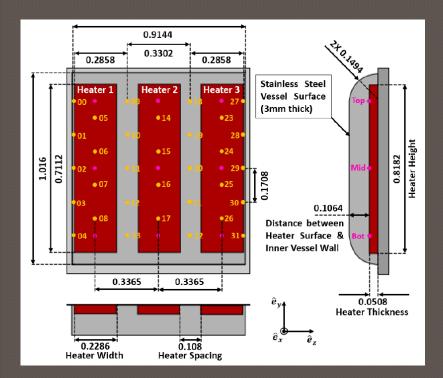
- Integration of reconstruction algorithm with an actual sensor array and assessment of its accuracy
- Demonstration on realistic HTGR applications

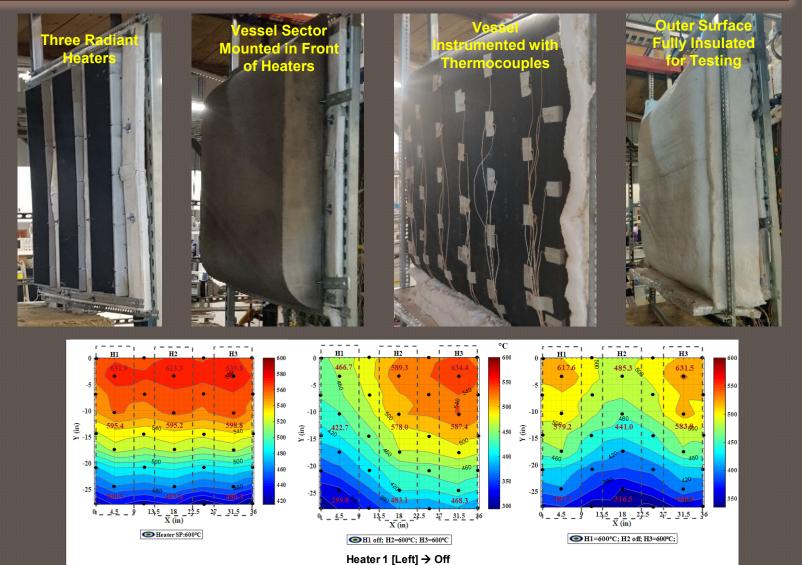
Project Accomplishments

• Experimental Testing

- Thermal and strain distributions obtained under a variety of heating condition
 - Radiant heating of reactor vessel model
 - Outer surface of vessel model instrumented with thermocouple and strain gauge arrays
 - Benchtop testing and validation of high temperature strain gauges

• Numerical Simulations


- CFD simulations for temperature fields have been completed and strain predictions are ongoing
 - Validation of ray tracing algorithms
 - 3D, thermal simulations of TAMU experimental vessel
 - Preliminary simulations of thermal strains have been acquired

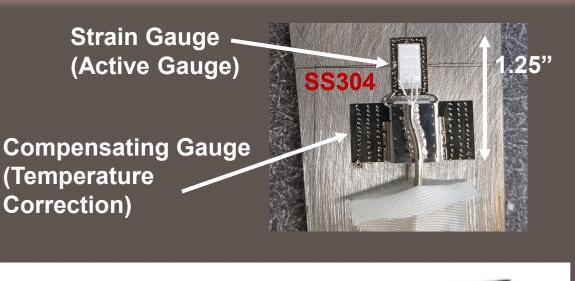

Application and Customization of the Convolutional Neural Network (CNN) Approach

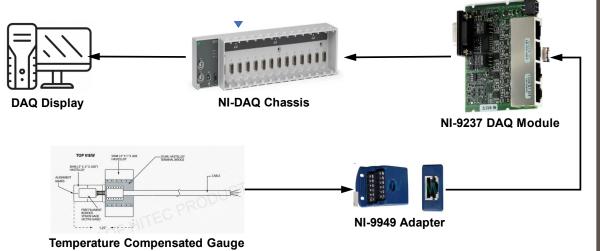
CNN has been demonstrated using CFD simulations and validated with experimental data

TEXAS A&M

Thermal Testing

 $T_{H2} = T_{H3} = 600^{\circ}C$

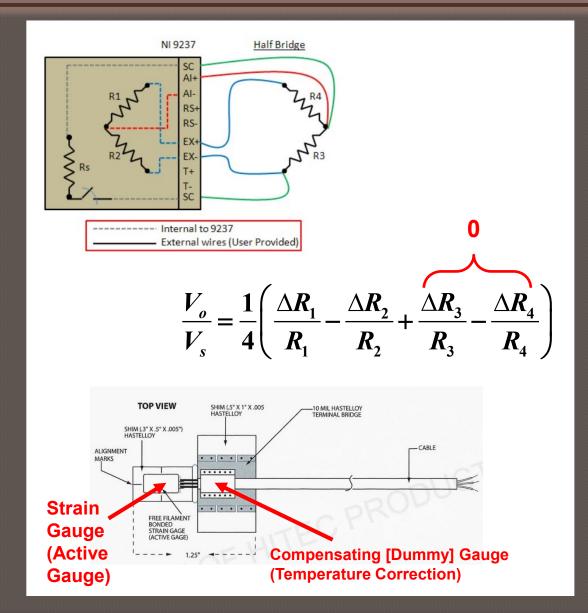



Strain Gauge Validation

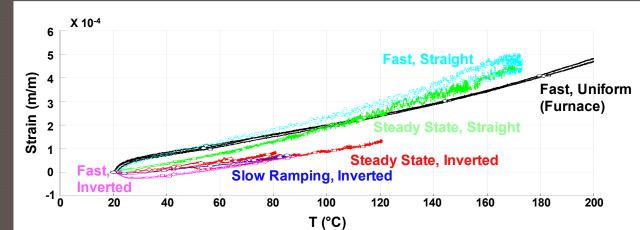
Strain Gauge Details

• HPI Strain Gauges

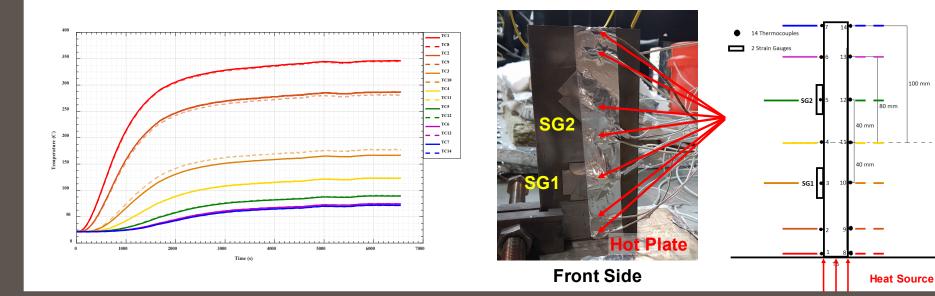
- HBWAH-12-250-6-MG-HB
- Rated for 980°C
- QuarterBridge-II (Modified Half-Bridge) configuration that helps eliminate zero drift error, temperature effects, lead wire resistance, etc.
 - One active element and one compensating element, unstrained on coupon
- Robust build and connections
- Easy application by spot welding



TEXAS A&M UNIVERSITY


Strain Gauge Validation Strain Gauge Details – Temperature Compensation

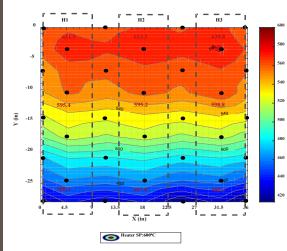
- Resistive type sensor (R4) The output is sensitive to temperature changes. This leads to:
 - Change in the resistance of gauge itself
 - Zero drift or datum shifts
 - Change in lead-wire resistance
- Temperature compensation is provided physically using a similar dummy gauge (R3), which is not attached to the substrate material, but is affected by similar conditions as R4. This negates any change in resistance due to temperature.
 - R1 and R2 are part of the NI module.


Strain Gauge Validation **Benchtop Validation – Thermal Strain Measurements**

- "Fin-type" 1-Dimensional Heating
 - Stainless steel specimen
 - Temperature and Thermal Gradient Variation along the fin length

 $100 \, mm$

10

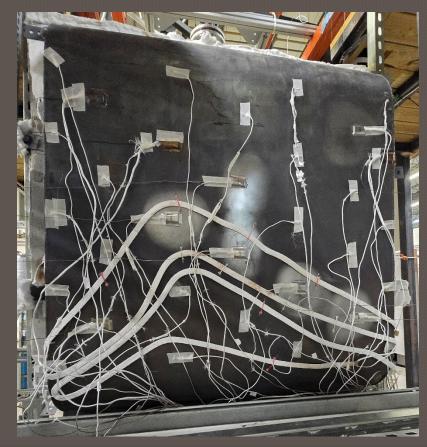


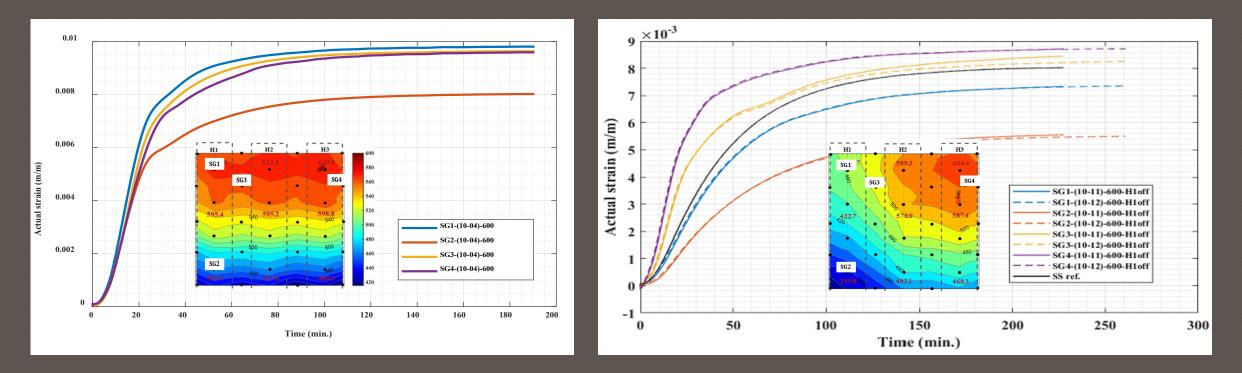
TEXAS A&M UNIVERSITY

Strain Testing

Vessel – Thermal Strain Measurements

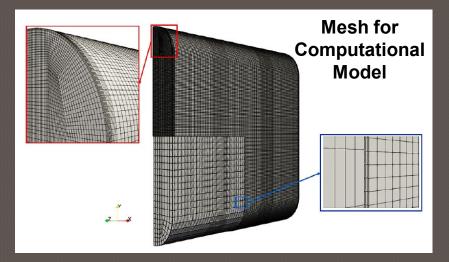
- Vessel Instrumentation
 - 10 Strain gauges
 - 32 Thermocouples

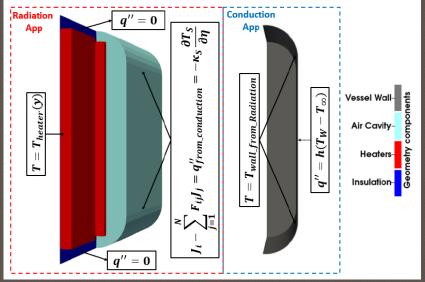



0.9144 0.3302 0.2858 0.2858 Heater 2 Heater 3 Heater 1 •14 15 • 06 • 74 0.7112 1.016 29 16 • 07 •25 •17 0.3365 0.3365

Strain Gauge Locations

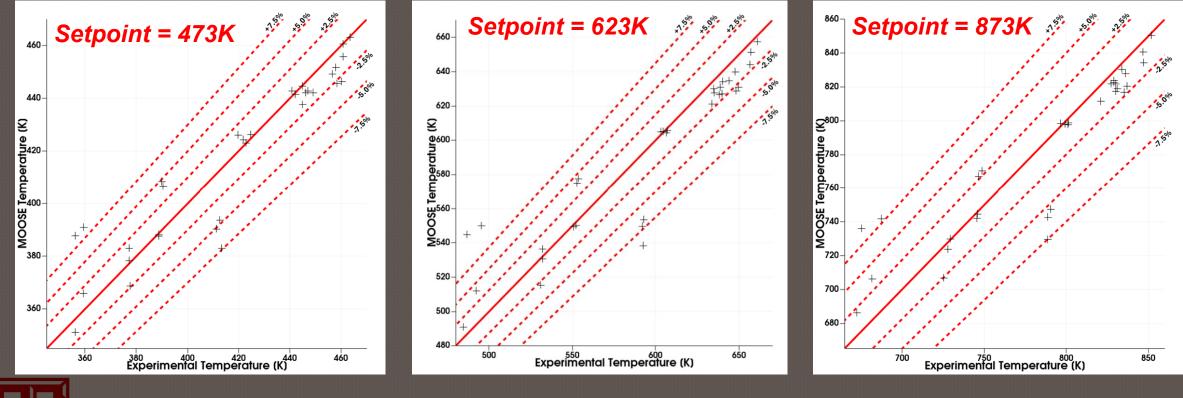
Strain Testing Vessel – Thermal Strain Measurements


Ð

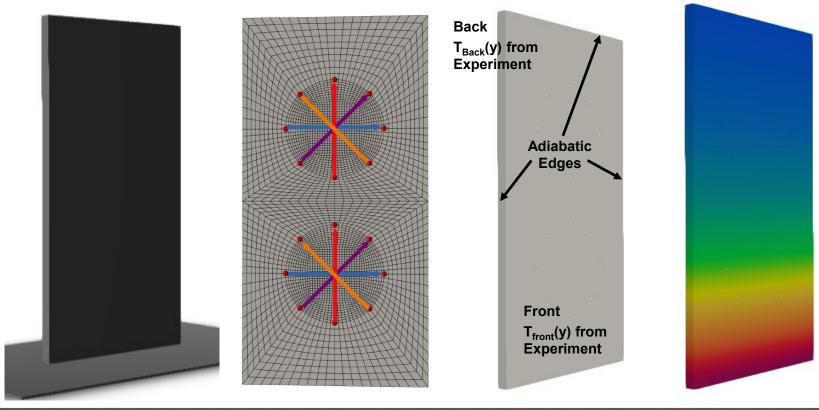

TEXAS A&N UNIVERSIT

Numerical Simulations Model Development with MOOSE

	# Elements (Gmsh)	Boundary Conditions
Radiation App (Between Heaters and Vessel Inner Surface)	33,288	Heater Temperature Distribution
Conduction App (Through Vessel Wall)	145,170	Inner Wall Temperature from Radiation App Outer Vessel Temperature – Convective Heat Flux (variable h)

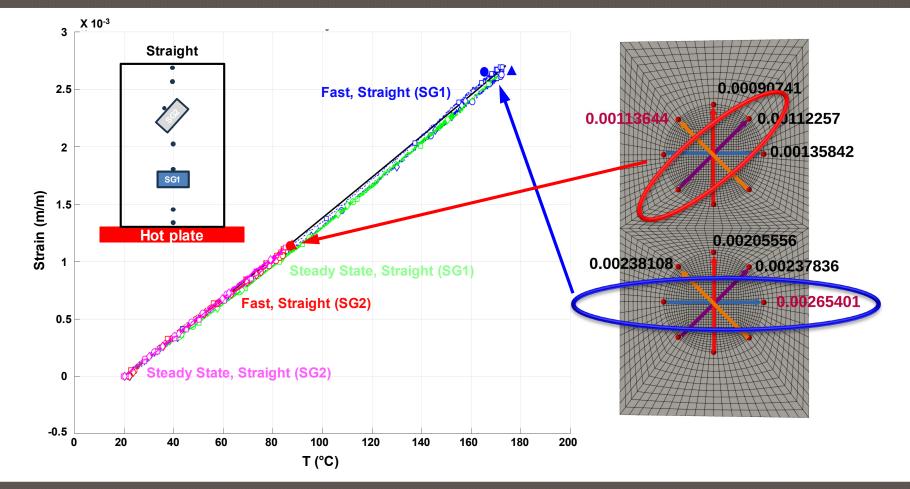

Boundary Conditions for Computational Model

Numerical Simulations


MOOSE Prediction and Comparison with Experimental Data

Numerical Simulations

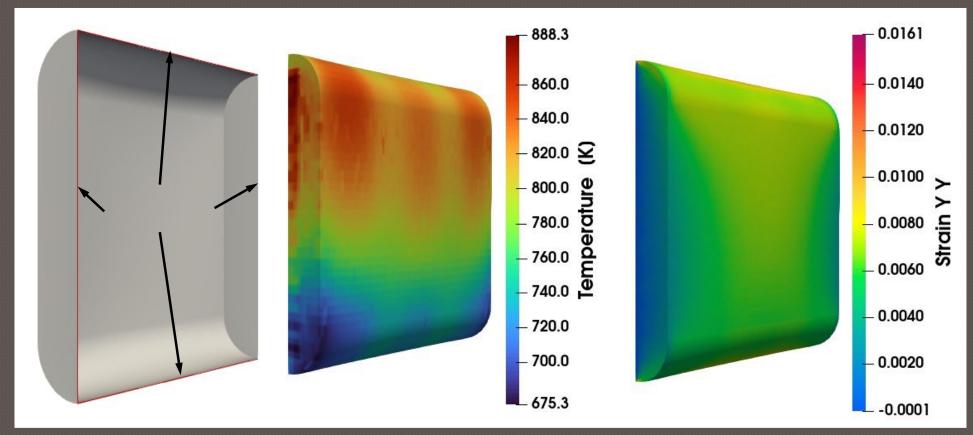
MOOSE Prediction of Thermal Strains in Benchtop Tests



Model for Numerical Simulations Preliminary Mesh and Target Regions Based on Strain Gauge Placement

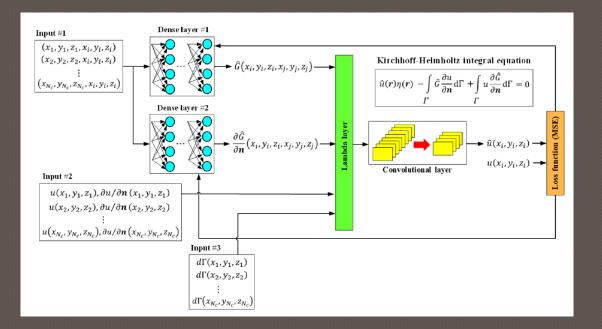
Thermal Boundary Conditions

Numerical Simulations


MOOSE Prediction of Thermal Strains in Benchtop Tests

Numerical Simulations

Preliminary Strain Predictions on Vessel Wall


Vessel Model

Predicted Temperature Distribution (600°C Setpoint) Preliminary Predicted Strain Distribution in Y-Direction for Given Temperature Distribution

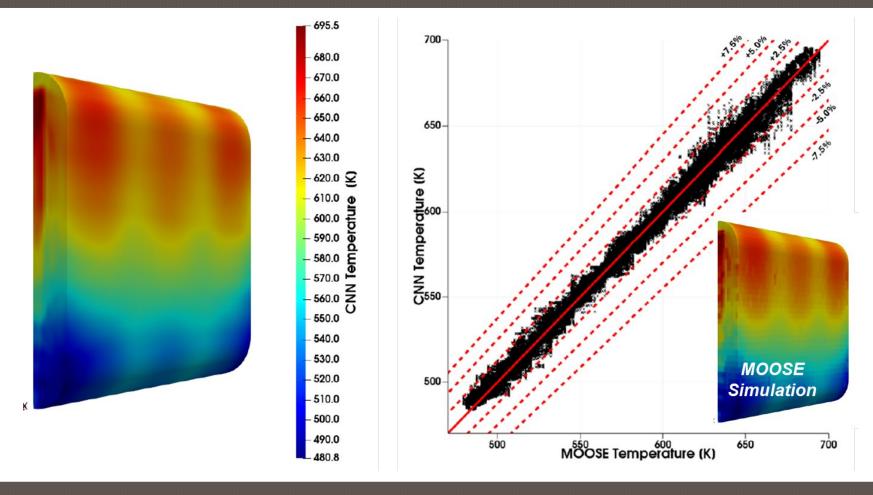
E/

TEXAS A&M UNIVERSITY

CNN Algorithm Development CNN for Restructuring a Spatial Field Distribution

	Set-Point Temperature (K)										
	Training	873	823	723	623	523	473				
	Validation	773	573			_					
4	Testing	673									

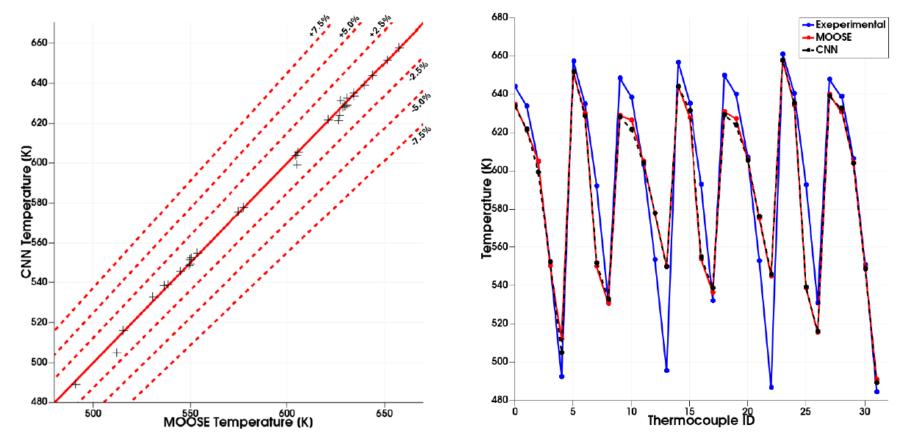
Reconstruct the temperature distribution within the vessel wall based on minimal temperature measurements.


2 Approaches to Generate CNN Data Set

- 1. Conventional Model Collect Temperature and Heat Flux from MOOSE at TC Locations to Construct Data Sets
- 2. Newton-Cooled Based Model Temperature from MOOSE at TC Locations; Heat Flux Calculated within CNN from Convection Equation

TEXAS A&M UNIVERSITY

CNN Algorithm Development


Temperature Comparison between CNN Reconstrued Field and MOOSE Model

TEXAS A&M UNIVERSITY

CNN Algorithm Development

Temperature Comparison between Measurements, MOOSE, and CNN

20

Concluding Remarks

TEXAS A&M UNIVERSITY

Project Accomplishments

- Experimental Testing
 - Benchmark testing and validation of high temperature strain gauges completed
 - Strain gauges installed on vessel wall
 - Strain distributions have been obtained under several heating conditions

Numerical Simulations

- CFD simulations have been completed including MOOSE's Ray Tracing Module
- Excellent agreement with experimental data
- Thermal simulations used as training data for CNN
- Validation of thermal strain measurements using benchtop test data
- Preliminary prediction of strain distributions in vessel wall

• Application and Customization of the Convolutional Neural Network (CNN) Approach

CNN has been demonstrated for temperature distributions using CFD simulations and validated with experimental data

Publications

- 1. Coppo Leite, V., Novak, A., Merzari, E., Ponciroli, R., Ibarra, L., 2023, "Application of a Physics-Informed Convolutional Neural Network for Monitoring the Temperature Field in Advanced Reactors", Proceedings of NURETH-20, Washington, DC, August 2023.
- Aldeia Machado, L.C., Coppo Leite, V., Merzari, E., Wright, L.M., Bhat, P., Hassan, Y., Ibarra, L., and Ponciroli, R., 2024, "Temperature Field Reconstruction of Surfaces Heated Through Radiative Heat Transfer Using Convolutional Neural Networks," ASME Paper No. HT2024-130465, 2024 ASME Summer Heat Transfer Conference, July 15 – 17, 2024, Anaheim, California.
- 3. Pramatha Bhat, "Assessing Strain Gauges for Real-Time Health Monitoring of High Temperature Gas-Cooled Reactor Vessels," 2024, TAMU (Nuclear Engineering) MS Thesis.

An Innovative Monitoring Technology for Reactor Vessel of Micro-HTGR

CID#: DE-NE0009285

Project:

22-26607

Lesley Wright Rodolfo Vaghetto	Texas A&M University Texas Engineering Experiment Station College Station, Texas	TEXAS A&M UNIVERSITY.
Elia Merzari	Pennsylvania State University State College, Pennsylvania	PennState
Lander Ibarra Roberto Ponciroli	Argonne National Laboratory Lemont, Illinois	Argonne Argonational Laboratory
Erik Nygaard	BWX Technologies, Inc. (BWXT) Lynchburg, Virginia	BWX Technologies, Inc.

Advanced Sensors and Instrumentation (ASI), Annual Program Webinar November 4, 6-7, 2024