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« 3D Printing: A major fabrication approach
for energy, infrastructure, aerospace

 Special parts fabricated at 1000 per year
 Large size (up to 5 meters)

« Highly flexible in building materials

* High Value added

 Can we embed distributed fiber sensors
to make SMART PARTS???

 High-res strain measurements (1-cm)
Distributed acoustic and vibration
Temperature

Corrosion

Condition-based Maintenance
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‘ Outline of the NEET Project PITT it (1
| I IEE Ea
« Embed distributed fiber sensors using additive manufacturing.
Direct metal laser sintering
Laser-energized net shaping
Wire-arcing (Smart parts as large as 1.5-meter)
Ultrasonic additive manufacturing
 Fiber sensor packaging using glass sealants
Sensor-enabled digital twin modeling.
New fiber and metal coating with compatible thermal expansion coefficients (TECs)
Demonstration of multi-parameter measurements in radiation environments

* Instrumentation & algorithm developments.
« Demonstration of high-frequency vibration measurements.

Irradiation test of sensor embedded by AM.
Fundamental challenges/limitation of sensor-embedding using AM and partial solutions.
Impacts to other fields.
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Vertically Integrated Sensor Fabrication Capability ~ PITT|o/ (g1
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800-nm __ !

270.1s pulses | system| Reel-to-reel fiber writing setup

= 180-fs laser.

= Fabrication of up to 1km of fibers.
= Point-by-point writing: Flexible.

= Through fiber coating fabrication.
= FBG, distributed, IFPI.

= High-T stable distributed sensors.
= Sapphire and silica fibers

. =S

Fiber Translation

Deep UV Sensing Fiber Fabrication

= Standard telecom fiber.
=  One-shot UV phase mask writing
= 10-km continuous sensing fiber
= Draw-tower free
R ; = Sensing fiber cost ~$0.1-$1.0 per meter
inscription | R s L Pt S - Y (competition: $10-30/m)
f ~ T BN = Joint pending patent with Corning
‘ = === =
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= Up to 25 high-temperature stable FBG array can be fabricated in hydrogen-resistant optical fibers.
= Packaged sensors in 316H SS tubing with polymer coating removed.

= Each sensor are pre-annealed and calibrated.

= Armored cable lead for field deployments.

= Packaged fibers can be repeated heated with consistent performance.
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Robust Demodulation Algorithm
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Demodulation algorithm key for sensor success.
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Four demodulation algorithm explored for accurate and reliable demodulations (avoid “peak jump”).
Occasionally demodulation of FBG peak jumps are the issue (a sudden temperature change up to 8C).

Computationally efficient and robust algorithm is needed to remove “peak fitting jump”.
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High-Temperature FBG Sensor Instruments ~ PITT/ci (g])

ELECTRICAL & COMPUTER

o
ves®

* Fully-integrated instrument (8, 16, 32, 64 channels)
» USB, Ethernet, wireless data communications.
» 5-kHz sampling rate (over total channel #).

The key is the algorithm!

» Three algorithms to ensure accurate sensor
demodulation.

* Interrogate both FBG and IFPI arrays.
» Background data screening and validation.
« Can simultaneously interrogate up to 1280 point

Sensors. ‘
« The world's first fully calibrated fiber sensors f CoooECoCCE
(Guaranteed at up to 650C). = @DG

. L auuaunas
 Aiming for full calibration at 850C.

* Made in Pittsburgh.




Field Test: Molten Salt Circulation Loop PITT |5k ]I
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» Completed immune to EM noises
» Radiation harden
» Straightforward calibration. i
* One-fiber, 20 sensors vs. 40 lead wires — 20 sensors. ’
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Radiation-Harden Sensors PITT | (]l
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Sensor Embedding in Metal Parts PITT [t ]l

= Enable energy users for rapid and straightforward sensor deployments
= Three sensor packaging technique developed for fiber sensor embedding in metal structures
= Applicable for a wide range of temperature ranges.

Fiber Packaging Technology: High-T (800C)
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Ultrasonic AM: up to 400C Distributed sensor in blade by LENS Wire-Arcing




Protection and Managing TEC Mismatch
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New Specialty Fiber with high TEC — with Corning PITT | (]l

3% Ge-doped fiber core

Fused silica trench

40% Ge-doped silica

TEC(GeO,) = [5.5+ 115.2 x (GeO, mol%)] x 1077

= 3% Ge-doped fiber core to maintain same thermal optical
coefficient

= Fused silica trench to ensure optical guiding

=  40% of Ge-doped silica outer cladding to increase TEC

= Successful fabrication of FBG fiber sensors

TEC experimental measured by an IFPI sensors

Intensity (dBm)

2923-2¢
A o

2

ELECTRICAL & COMPUTER o2
YEP

-30
35 ® SMF28e+
® Ge-doped Fiber
-40
-45
-50
-55
-60
-65
1547 1548 1549 1550 1551 1552 1553
Wavelength (nm)
Thermal Expansion Coefficient
0.006
e V- TE-D6x
0.005 - R1-0.9967
0004 Lo ® = 6E-06x
. e R-p9an1
. e . ot
3 0003 e -
) .
. et W
0.002 o —
T g
0.001 RS i
R S
R 1
0 0".."
0 100 200 300 400 500 600 700 800
Temperature Change(°C)
® Ge-doped core and cladding ® SMF28e+
sevene Linear (Ge-doped core and cladding) - Linear (SMF28e+)

Standard Fiber: AL/L=0.55 x 10® T
New fiber: AL/L=1.45 x 10° T
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Sensor-Fused AM Process — Metal Process PITT |t ()
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(Tt e T o L s ™I Sensor Fused AM Process
| ' | | * High resolution real-time T & pe
measurements

= Design proper structures to embed
sensors without disturbing AM
process and part itself

» Real-time measurements to study
AM process itself

= Post-process monitoring to study
residual strain formation and
relaxation.

= Compare, correct, and validate DT

'7
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Tem pe ratu e The simulated global temperature profiles of the LENS
M easu rement by e (a) upon the completion of the deposition

* (b) 0.5s after the deposition process.

Em bedded Senso I'S * Measured results by fiber sensors are shown in (c)-(e).
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Strain Measurements vs. Simulation
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' Hermetical Sensor Embedding Using Glass Sealants PITT

= Wide selection of sealant materials: glass and ceramics

= TEC of glass sealant ~ 5ppm/C — right in the middle between
silica fiber and metal.

Freestanding T sensor = Hermetical bonding on metals — enable pressure boundary

penetration.

= Rapid process possible
Embedded sensor

= High-T application possible.

Glass sealant pellet = Packaged sensor size > 6-mm diameter OD

Metal Tube —




FEA Simulation
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Experimental Results
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Experiment match simulation: ~1500-2000 compressive strain

Linear temperature response: non slippage
Both FBG and IFPI sensors have been embedded
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Hermeticity and High-Temperature Testing — PITT o ()
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Ultrasonic Metal Additive Manufacturing PITT |5 'E'
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Sensor Fused UAM process

* Fs-inscribed 2-mm long FBG through polyimide coating.

= Low processing temperature ~170C for aluminum.

= AL-6061 H18 aluminum foil.

= 4 kN downforce and 32 um peak-to-peak scrubbing amplitude.
= Repeated strain test, no slippage up to 5000 pe.

= Up to 300C operation (short-term).

o = = = =
AMM Workshop in PNNL August 27, 2024 ! F— YL 201 1
nced Mett or Mar turing




20,

‘ Telecom laser enable FBG Interrogation PITT | i (]

. Wavelength tuning stitching

. Gas-cell wavelength reference

. High-speed interrogation possible

. Heterogeneous multi-core architectures: FPGA+ DSP
. Rapid sensor data demodulation via DSP

. Static wavelength variation better than + 2pm
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Laser Velocimeter Comparison

_ _ Vibration: 1kHz
5kHz vibration
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Bunman Frequency Estimation

Reflectivity (a.u.)
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Demodulation Algorithm and Interrogation Systems for NE

ELECTRICAL & COMPU

10x more efficient than Gaussian Peak Fitting.
Robust algorithm avoid “jump”

Easy implementation into DSP chips

Dedicate sensor demodulation electronics developed
Support up to 1MHz sampling rates for
acoustic/vibration sensing

40-ng dynamic strain

0.1C static measurement (temperature)
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- N sin = . -
Ap = A, + A, — arctan |:(T — Eight channels to support >200 sensor simultaneously
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‘ Rapid Demodulation Algorithm PITT |cchzcis (]l
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: | — Demodulated by Gaussian fitting
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Irradiation of Embedded Fiber Sensors
=== mmm mm Carried out by Dr. Moinuddin Ahmed

= Irradiation at LANSCE (Los Alamos Neutron Science Center)
= Sensors were irradiated with neutron energy above 1.5 MeV

= Sensors were irradiated at room temperature and at 300 °C.

= Irradiation times were set at 2 hrs and 4 hrs

\993-2%",
PITT’ENG[NEERING |

~ Argonne:

NATIONAL LABORATORY

o’

Fiber Sensor Temperature 1.5MeV Neutrons 10MeV Neutrons
(®) (n/cm?) (n/cm?)
1 25 9.409E+09 4.682E+09
2 25 1.892E+10 9.416E+09
3 300 9.409E+09 4.682E+09
4 300 1.892E+10 9.416E+09
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Irradiation of Embedded Fiber Sensors PITT i 'E'
E— mesm msm mm  Carried out by Dr. Moinuddin Ahmed Argonne S
Sensor 1 Sensor 2

4

Wavelengih ()

Fiber Sensor Temperature (°C)  1.5MeV Neutrons (n/cm?)  10MeV Neutrons (n/cm?)

1 25 9.409E+09 4.682E+09
2 25 1.892E+10 9.416E+09
3 300 9.409E+09 4.682E+09
4 1.892E+10 9.416E+09
wave diff (nm) 05 diff (48)
1546.73 1546.79 -0.06 -6.958 -16.827 9.869
2 1553.39 1553.36 0.03 7.993 -16.658 8.665
4 1551.11 1548.52 2.59 -10.713 -16.647 5.934

e == ====
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What is the Challenge?
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Post-Fabrication Heat Treatments are Essential PITT s (gl

https://www.mtixtl.com/CM-HIP-2.aspx
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UAM for SS410
Yield Stress: As Fabricated: 137.5MPa
Heat treated: 337.8MPa
HIP process: 1120C, 100 MPa, 4 hours

WAAM for Inconel 718
Yield Stress: As Fabricated: 430 MPa
Heat treated: 1040 MP
Heat Treatment: Multi-step, 1300C, 6 hours

(J. Song, X. A. Jimenez, C. Russel, A.C. To, https://doi.org/10.1038/s41598-023-46674-2)

Without Post Heat Treatment?
 Drastically poorer mechanic properties.
* Prone to corrosion.

« No known sensors can withstand post-fabrication heat
treatments.

0 — — — —
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https://doi.org/10.1038/s41598-023-46674-z
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Absorbent coating—— EEEEEEEEEE S

Metal specimen——*
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SOllltiOn Metal;coated Fiber
Laser Shock Peening (LPS) = ;Z L

A room temperature post-treatment .-
e N Sy W

* A room-temperature post-process is
known to improve corrosion
performance.

* Simple and can be robotically deployed.

* Introducing a surface with compressive
strain go as deep as 5-mm.

* Compressive strain as much as 0.1%.

 Widely applicable for all AM-embedded
fiber sensors
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A RT Post Processing: Laser Shock Peening ~ PITT-hiccs ()

ELECTRICAL & COMPUTER o2
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The sensor are embedded
between 1.115m-1,18m

—e—1st peening —e—2ndpeening —e—3rdpeening —e—4thpeening —e—5thpeening —e—6th peening

20

* 0.5 mJ/pulse, 10 ns, YAG.
* 0.5 mm/s peening speed.
« Reach maximum compressive strain:

130pe measured by embedded fiber sensors =
* Maximum depth: 5-10 mm.

Suitable for NE applications.

-160
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Length (m)
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Many AM techniques can embed fiber sensors in metal parts.
* LENS, DMLS, UAM, and Wire arcing.
* No operational slippage temperature reached 800C.
« Demonstration of temperature, strain, and vibration sensing.
« Smart part withstand up to 20 MP pressure and through the pressure boundary.

Innovated optical fibers and metal coating can improve performance.

Fiber sensors can NOT withstand post-fabrication heat treatment.

Laser shock peening can be a room-temperature alternative to post-fabrication heat treatment.
Fiber sensor should be embedded within 10 mm? from the surface.

Multi-step process.




Contribution to Other Fields

Additive Laser Integrated Systems for Analysis
The World’s Most Advanced Organ-on-a-Chip (OC) Devices

Breakthrough innovation
* Achieve complete flexibility in building materials.
* Free from drug molecule contamination.

* Nature 3D structures — achieving complex and multi-
functional chips.

* On-chip flow control integration of pump and valves!
* On-chip sensors embedding — rich on-chip functions.

* Built-in sealing layer — straightforward assembly and
use — minimize bio-contamination.

* Eliminate 80% of expensive off-chip instruments.
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* On-chip three-way valve and pump for
complex liquid routing with no latency!

On-Chip Pump and Valves

 Eliminated off-chip instruments.

! Output f ~

Input 1

-~ Output 4

Input 2

Example: Injection of 20-60 ul drug without
bubble using on-chip pump/valve

PR " T =

Video played atG/x
Step 1:

pre-fill the valve chip
with media (yellow)

100%

90% [ R
80%
70% [
60%

50% [

relative intensity (%)

40%

30%

—k—— input side average intensity
—O— output side average intensity
------ reference chamber average intensity

20%

10% - 1 1 1
0 20 40 60 80 100
volume injected (uL)



Embedding Sensors on-Chips

« Antibody functionalized polymer can be integrated on-chip.
* On-chip ELIZA, fluorescent, Raman, and flow measurements.

Microfluidic
channel

>
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Successful Production of Pancreatic Islets using Induced

Pluripotential Stem Cell (iPSc)
N 21 ) “\""kx ¥ ~
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« Seven-day continuous cultures.
 Achieved 90% viability.

 Successful production and harness of IPSC
derived pancreas islets.
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‘ Contact Information and Questions PITT |Gl 1E

University of Pittsburgh
* Pl: Kevin P. Chen (pec9@pitt.edu, Tel. 724-6128935)
e Co-Pl: Albert To (albertto@pitt.edu)

Oak Ridge National Lab
 Christian Petrie (petriecm@ornl.gov)

Collaboration Welcome!

\
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