

Advanced Sensors and Instrumentation

Analysis of Extreme Radiation Dose Effects on Fiber Optic Sensors

Advanced Sensors and Instrumentation (ASI) Annual Program Webinar October 24 – 27, 2022 Dr. Christian Petrie, Group Leader, PI

Oak Ridge National Laboratory

Potential Nuclear Applications of Optical Fibers

Heater Centering rods Insulator wire

[1] H.C. Hyer et al., Additive Manufacturing, 52 (2022), 102681 [2] C.M. Petrie et al., Journal of Nuclear Materials 552 (2021) 153012. [3] D.C. Sweeney et al., "Analog Front End Digitizer using Optical Pulse-Width Modulation for Nuclear Applications," IEEE Trans. Instrum. Meas. (under review) [4] A. Birri and T.E. Blue, Progress in Nuclear Energy 130 (2020) 103552.

Rad-hard Front End Digitizer (FREND) to transmit conventional sensor data through reactor containment over fiber optic cables to reduce noise in cabling [3]

Distributed gamma thermometer (local power monitoring) [4] Local temperature measurements in an experiment simulating gas-cooled reactor core outlet mixing [7]

Sheath

Dense

gamma-

absorbing tube

[5] D.C. Sweeney, A.M. Schrell, and C.M. Petrie, IEEE Trans. Instrum. Meas. 70 (2021) 1-10. [6] C.M. Petrie, D.C. Sweeney, and Y. Liu, US Non-Provisional Patent No. US 2021/0033479 A1, Application No. 16/865,475, published February 4, 2021. [7] H.C. Heyer, D.R. Giuliano, and C.M. Petrie, Appl. Therm. Eng. 230 (2023) 120847.

Gas gap

2

Embedded fiber optic sensor for

corrosion, or

acoustic emissions

[5, 6]

Challenge: Signal Attenuation and Drift

Signal attenuation could be a show-stopper

- Existing data at moderate neutron fluence and low temperature (<100°C) [1]
- Need to improve understanding for different fiber compositions and gratings at higher temperatures and neutron fluences

Fused silica compacts ~2% under neutron irradiation

- Temperature-dependent, saturates at ~10²⁰ n/cm² [2]
- Results in significant sensor drift

[1] G. Cheymol et al., IEEE Trans. Nucl. Sci. 55 (2008) 2252-2258
[2] C.M. Petrie et al., *J. Non-Cryst. Solids* 525 (2019) 119668.

WIRE-21: HFIR's Most Highly Instrumented Experiment

- Primary goal: Irradiate WEC's wireless temperature & pressure sensors at LWR temperatures (~300° C)
- Broader goal: Develop a platform for economical, accelerated testing of advanced sensors
 - Thermocouples (14)
 - Distributed fiber optic temperature sensors (8)
 - Self-powered neutron detectors (4)
 - Passive SiC temperature monitors (31) and flux wires (4)
- Completed 3 HFIR cycles
 - $~3 \times 10^{21} n_{fast}/cm^2$
 - ~8 × 10²¹ n_{thermal}/cm²

													121		
FY20					FY21			FY22				FY23			
Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
WIRE-21 experiment design				Fabrication		Asse	mbly	Irradiation			Data analysis				

ASI Supported the Analysis of All Fiber Optic Data

Goal is to understand differences in signal attenuation and drift at high neutron fluence

- Fibers with and without gratings
- Singlemode and hollow core fibers
- Varying fiber dopants (F, Ge)
- Varying grating types (Type I and II)

Fiber	Description	Gratings				
1	Pure SiO ₂ core, F-doped SiO ₂ cladding	N/A				
2	Ge-doped SiO ₂ core, pure SiO ₂ cladding					
3	F-doped SiO_2 core and cladding with Type	Type II, ~1% reflectivity				
4	II gratings	~65 mm spacing				
5	Pure SiO ₂ core, F-doped SiO₂ cladding with Type II gratings	Type II, ~0.5% reflectivity, ~10 mm spacing				
6	Ge-doped SiO ₂ core, pure SiO ₂ cladding with Type I gratings	Type I, <0.1% reflectivity, ~10 mm spacing				
7	Hollow core photonic crystal fiber	N/A				

Some Data Can Only be Analyzed Using ORNL's Adaptive Reference Techniques

Results: Good and Bad News for F-doped Fibers

Drastic differences in reflected signal amplitudes at high neutron fluence

Measured spectral shifts (temperatures) deviate from thermal + compaction models at high neutron fluence

C.M. Petrie and D.C. Sweeney, "Enhanced backscatter and unsaturated blue wavelength shifts in F-doped fused silica optical fibers exposed to extreme neutron radiation damage", J. Non-Cryst. Solids 615 (2023) 122441 doi.org/10.1016/j.jnoncrysol.2023.122441

Results: Gratings

- Type II FBGs are clearly more radiation-tolerant than Type I FBGs
 - Type I FBGs erased within 2 days of irradiation
 - Type II FBGs in pure SiO₂
 core, F-doped SiO₂ cladding
 fiber started to degrade
 significantly in 2nd HFIR cycle
 - Type II FBGs in F-doped *core* and cladding fiber survived entire experiment ($\sim 3 \times 10^{21}$ n_{fast}/cm^2)
- Core dopants have strong effect on FBG stability

D.C. Sweeney et al., "Analysis of WIRE-21 SPND and Optical Fiber Sensor Measurements", ORNL/TM-2023/2024(2023) doi.org/10.2172/1997703

Results: Hollow Core Fibers May Not Be a Silver Bullet

- Hollow core fibers thought to be more rad-hard because light is transmitted in a gas that is immune to radiation damage
- Clear degradation in CH08
- CH07 maintains measurable reflected intensities >10 cm above the core
- Difficult to draw conclusions regarding transmission from reflected intensities in this fiber

D.C. Sweeney et al., "Analysis of WIRE-21 SPND and Optical Fiber Sensor Measurements", ORNL/TM-2023/2024(2023) doi.org/10.2172/1997703

Concluding Remarks

Analysis of the WIRE-21 optical fiber data reveals several interesting phenomena under extreme neutron flux/fluence

- Ge-doped fibers, with or without Type I FBGs, are not suitable for in-core applications (>10¹⁹ n_{fast}/cm²)
- Pure SiO₂ core, F-doped SiO₂ cladding fibers showed higher reflected intensities after ~10²¹ n_{fast}/cm² than before irradiation
- Type II FBGs in the same fiber were essentially erased after ~10²¹ n_{fast}/cm²
- Type II FBGs are much more radiation tolerant when inscribed in fibers with F-doped SiO₂ core and cladding
- All fibers showed significant drift that cannot be explained by radiation effects in SiO₂ (suspected coating effect to be studied in FY24)
- Hollow core fibers showed significantly reduced backscattered intensities during irradiation (may not be a silver bullet) but it is difficult to draw conclusions on their transmission properties

Google

Scholar

Chris Petrie

Group Leader, ORNL

petriecm@ornl.gov

W (865) 576-0827 | C (419) 410-4135 ORCiD: 0000-0003-1167-3545 https://www.ornl.gov/staff-profile/christian-m-petrie

10

Questions? Chris Petrie, petriecm@ornl.gov

Chris Petrie

Google Scholar Group Leader, ORNL petriecm@ornl.gov, W (865) 576-0827 | C (419) 410-4135 ORCID: 0000-0003-1167-3545

https://www.ornl.gov/staff-profile/christian-m-petrie