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Self-Regulating Microreactor

• Very small (<50MWe) reactors for non-conventional nuclear markets

• Self-regulating requires remote and semi-autonomous microreactor operations
− Reduced number of specialized operators onsite
− Load following capability 
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There are significant needs for research and 
development support for transferring from operator-

centric to autonomous-enabled control room



Anticipatory Control
• Anticipatory control strategy for establishing 

technical basis of self-regulating microreactors
− Proactively respond to disturbances and find 

optimal control actions to meet operational goals.
− Explicitly incorporate and handle constraints by 

system dynamics, operational and safety 
requirements.

• Data-driven approaches for adapting systems to 
different testing systems and operational 
features
− Expressive power: representing complex 

systems with nonlinear dynamics. 
− Modularity: system components can be 

separated and recombined. 
− Adaptability: flexible model forms and 

parameters
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Given the complexity of nuclear energy systems, anticipatory 
control strategy shows better capabilities in efficiently and safely 

achieving (semi-) autonomous operations for microreactors



Physics Model Background
• This work utilizes MOOSE-based tools to create a 

high-fidelity simulator for a generic design of a 37-
HP microreactor test facility.

• The 37-HP system consists of a hexagonal 
stainless-steel monolith containing 37 HPs and 54 
heater rods.
− MOOSE—Multi-Apps Simulation
− BISON—Monolith heat transfer
− SOCKEYE—Heat Pipes

Heat Pipe Overview

Evaporator

Heat In

Heat Out

Condenser

Sockeye: A One-Dimensional, Two-Phase, Compressible Flow Heat Pipe Application, Hansel et al., 2021

• Thermal heat from the fuel pins is 
absorbed, evaporating the working 
fluid at the evaporator end.

• The vapor then travels axially 
through the vapor core, and the 
working fluid is condensed at the 
cold end of the HP.

• A wick structure inside the HP then 
drives the condensed working fluid 
back to the hot end of the HP via 
capillary force.
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MOOSE—Multiphysics Object-Oriented Simulation Environment
https://mooseframework.inl.gov/



Anticipatory Control with Plant Simulator
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Autonomous Control fOr Reactor techNologies (ACORN)



Anticipatory Control

• Data-Driven Model Predictive Control (MPC) as an implementation of anticipatory control strategy

• Process model with data-driven methods
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𝐽𝐽∗ = min
𝑈𝑈

∑𝑘𝑘=1𝑁𝑁 𝑙𝑙 𝑥𝑥𝑘𝑘|𝑗𝑗 ,𝑢𝑢𝑘𝑘|𝑗𝑗 Optimization
subject to 𝑥𝑥𝑘𝑘+1|𝑗𝑗 = 𝑓𝑓 𝑥𝑥𝑘𝑘|𝑗𝑗 ,𝑢𝑢𝑘𝑘|𝑗𝑗 Process Model

𝑈𝑈 = 𝑢𝑢1|𝑗𝑗 , … ,𝑢𝑢𝑁𝑁|𝑗𝑗 ∈ 𝐔𝐔𝑖𝑖 for all 𝑖𝑖 = 1, … ,𝑛𝑛𝑐𝑐𝑢𝑢 Constraints on range, magnitudes, and derivatives 
of control actions and state variables𝑋𝑋 = 𝑥𝑥1|𝑗𝑗 , … , 𝑥𝑥𝑁𝑁|𝑗𝑗 ∈ 𝐗𝐗𝑖𝑖  for all 𝑖𝑖 = 1, … ,𝑛𝑛𝑐𝑐𝑥𝑥

𝑥𝑥0|𝑗𝑗 = 𝑥𝑥𝑗𝑗 Initial conditions at every shifted time window

𝑥𝑥𝑘𝑘+1|𝑗𝑗 = 𝑓𝑓 𝑥𝑥𝑘𝑘|𝑗𝑗 ,𝑢𝑢𝑘𝑘|𝑗𝑗 ,𝑤𝑤𝑗𝑗 ± 𝛿𝛿

State-space model 
by SINDYc

AI/ML models

Approximated by

Compared to physics-based models, data-driven surrogates 
are computationally efficient, accurate, and adaptive.

Sparse Identification of Nonlinear Dynamics with Controls (SINDYc) is a data-driven system identification method 
for nonlinear dynamical system with inputs and forcing using regression methods

Feedforward neural network (FNN)

Recurrent neural network (RNN)



Case Study #1

• Model predictive controllers (MPCs) with different modeling approaches result in similar 
performance in tracking the reference setpoints
− More fluctuated predictions from AI/ML models than the state-space model identified by SINDYc
− NN-based MPCs better track sharp changes (nonlinear behaviors) in setpoints.
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Models in MPC Errors in tracking reference setpoints

𝑻𝑻𝒆𝒆 𝑻𝑻𝒄𝒄
SINDYc State-Space 39.50 17.89

Feedforward Neural Net 27.54 11.63

Recurrent Neural Net 16.03 8.56



Online Updating and Transfer Learning 

• Adaptable process model through online updating

• Most common incarnation of transfer learning in deep 
learning:
− Take layers from a trained model
− Freeze layers to avoid destroying trained information
− add new layers or free selected layers
− Train new layers or selected layers 

• Only necessary updates: 
− Update only when large discrepancy is detected. 
− Update only when a sufficient amount of data is 

collected.
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“Trainable”: Updated 
based on new data

“Untrainable”: Fixed for remembering 
training information 

𝑥𝑥𝑘𝑘+1|𝑗𝑗 = 𝑓𝑓 𝑥𝑥𝑘𝑘|𝑗𝑗 ,𝑢𝑢𝑘𝑘|𝑗𝑗 ,𝑤𝑤𝑗𝑗 ± 𝛿𝛿

Instead of a “frozen” model, AI/ML models also offer 
opportunities in adapting to new (sensor) data. 

Reduce model errors by 
continuously learning from new data



Case Study #2

• Used a two-layer Feedforward Neural Net as 
the surrogate of the baseline reactor model
− FNN is updated with discrepancy between 

predicted and measured powers exceeds a 
limit (marked by   ). 

− Optimize updating strategies for better 
performance.
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Surrogate models RMSE (W)

Prediction errors

FNN without update 510
+ FNN with online updates 223.5

+ Optimized online updating strategy 130.5
Target (ground-truth) model 0.0

Discrepancy between 
target and achieved 

power rates

FNN without update 649.9
+ FNN with online updates 214.7

+ Optimized online updating strategy 178.7
Target (ground-truth) model 168.2

• Improved performance 
with online updating
− Prediction accuracy is 

improved by 74%

− MPC performance is 
improved by 70%



Failure Detection Flow Diagram

Adaptive Control Beyond Normal Operations

• In the event of a system anomaly, such as a heat pipe failure, the control system needs to be 
capable of controlling the reactor in the degraded state.

• A detection module was built into the model predictive controller (MPC) to detect HP failure and—
should a failure be detected—to adapt the predictor model accordingly thus creating and 
adaptive-MPC (A-MPC).

• Should a failure be detected, the surrogate predictor models are replaced with pre-trained models 
that match the failure case.

Measurements

Predictions Discrepancy larger 
than acceptance?

HP 
Normal

HP 
Failure

Predictor Remains 
Standard Model

Change Predictor to 
Failure Model

YES
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Similar failure 
patterns seen before?

YES
OR

NO

𝐷𝐷𝑖𝑖𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑛𝑛𝐷𝐷𝐷𝐷𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐷𝐷𝑎𝑎𝐷𝐷
𝑇𝑇𝑀𝑀𝑀𝑀𝐸𝐸𝑀𝑀 − 𝑇𝑇𝑃𝑃𝑃𝑃𝑀𝑀𝑃𝑃

𝑇𝑇𝑀𝑀𝑀𝑀𝐸𝐸𝑀𝑀



System States
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System Output
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Case Study #3
1. A-MPC controller proactively alters its commands to 

avoid a predicted breach of upper constraints.
2. The A-MPC controller makes an accurate prediction 

and follows the reference trajectory.
3. A-MPC maintains steady state temperatures within 

constraints.
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Conclusions

• This work demonstrates anticipatory control strategy in controlling a HP-cooled microreactor
− Data-driven predictors, using SINDYc, feedforward, and recurrent neural networks, are generated and evaluated 

under normal power tracking conditions.
− All models provide similar accuracy, while neural networks-based control systems show better tracking capabilities. 

• Adaptive control strategy is demonstrated with online updating and with pre-trained models for anticipatory 
controls beyond normal operations. 
− The tracking and constraints handling capabilities are improved. 
− The prediction accuracy is improved.
− A user interface prototype for human-in-the-loop tests

• Future works include expanding to multiple heat pipe failures, adapting the control strategy to gas-cooled 
microreactor, and quantifying the uncertainty. 
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Battelle Energy Alliance manages INL for the U.S. Department of Energy’s Office of Nuclear Energy. 
INL is the nation’s center for nuclear energy research and development, and also performs research 
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