

Advanced Sensors and Instrumentation

Benchmark Analysis for the Optical Dilatometry using Silicon Carbide Temperature Monitors

Advanced Sensors and Instrumentation (ASI) Annual Program Webinar October 24 – 27, 2022

Malwina Wilding Nuclear Instrumentation Engineer Idaho National Laboratory

Project Overview

3 mm

• Brief summary of research scope:

Since the early 1960s, SiC has been used as a post-irradiation temperature monitor. Researchers observed that SiC's neutron-irradiation-induced lattice expansion annealed out when the post-irradiation annealing temperature exceeded the peak irradiation temperature. Passive temperature monitors are needed for when real-time sensors are not practical or economical to install in an irradiation test. The main purpose is to provide a practical and reliable approach to estimate peak irradiation temperature during post-irradiation examination (PIE) for direct integration in irradiation test designs.

• Project Schedule:

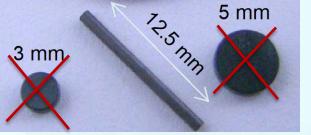
October 2022: Complete level 3 milestone (M3CT-22IN0702074) titled "Benchmark Analysis for the Optical Dilatometry using Silicon Carbide Temperature Monitors"

• Participants:

Malwina Wilding (PI & WPM) and Kurt Davis Austin Fleming (TPOC) Idaho National Laboratory

Technology Impact

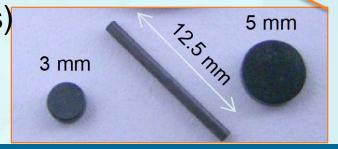
- Passive monitors provide a practical, reliable, and robust approach to measure irradiation temperature during post-irradiation examination while requiring no feedthroughs/leads comparable to current more-complex real-time temperature sensors
- They have been chosen because they have a proven history for use by stakeholders for deployment and require continued development and characterization to assure successful integration with program schedules and objectives
- Further develop the temperature passive monitor capability for wider rage of temperatures, geometries and neutron damage
- Facilitates the development of advanced sensors and instrumentation with cross-cutting technology development to support the existing fleet, advanced reactor technology and advancing fuel cycle technology development


Resistivity Method

- Electrical resistivity is accepted as a robust measurement technique resulting in accuracies within 20°C
- Very time and labor-intensive process with near-constant attention from trained staff (1 week to 3 week per sample)
- Labor time for Technician, Engineer, Radiological Control, and Administrative Assistant
- Adds many potential sources of measurement error:
 - Potentially result in oxidizing the SiC temperature monitor
 - Measurement error due to repeatedly transferring back and forth between the furnace and the test fixture
- Currently can only process rod-shaped SiC temperature monitors

Resistivity Method Set-Up

SiC temperature monitors


Spring loaded sample fixture.

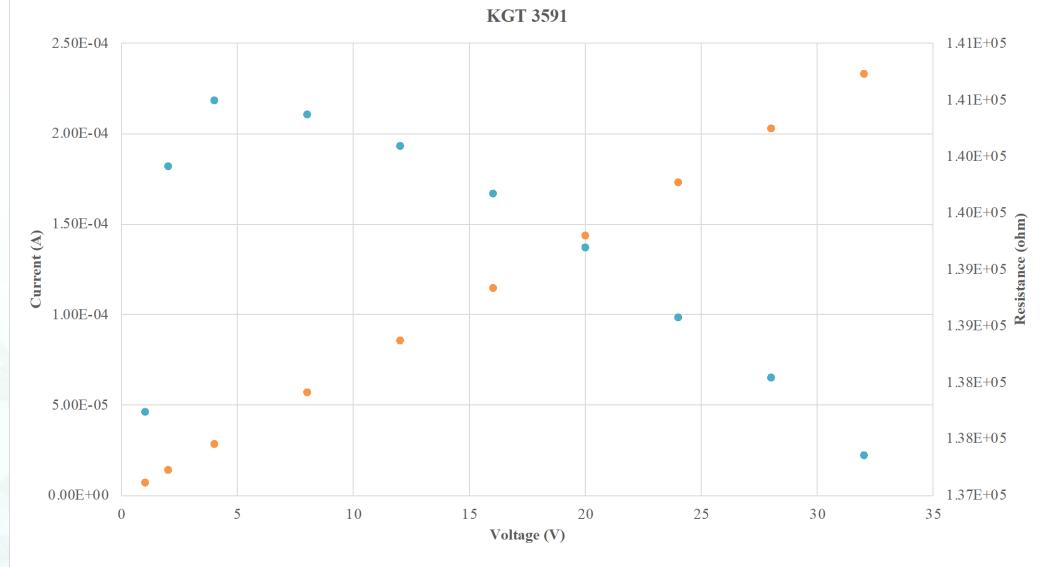
Dilatometry Method

- Automated process requiring minimal setup time
- Dilatometer runs under vacuum or inert gas
 - key requirement for avoiding any oxidization issues
- Max. operating temperatures of 1400°C (resolution of 0.1°C)
 - SiC passive monitor temperatures are 200 1200°C
- Reduced time expense
 - Time to process each sample 2 to 3 days (target temperature dependent)
- Contactless dilatometric measurement system
 - Allows samples to freely expand/shrink without any interference from mechanical contact
- Can process all SiC temperature monitors (rod and both discs)
 - 0.3–30 mm in length with a maximum height of 10 mm

Issues (Schedule/Cost/Technical)

- NSUF planned to provide 10 SiC temperature monitors:
 - BSU-8242 with 7 SiC rods: 1-SiC rod per capsule for 7 capsules (located in the middle of the capsule)
 - GE-Hitachi with 3 SiC rods: 3-SiC rods per 1 capsule (located in the bottom, middle, and top of the capsule)
- Multiple Delays:
 - Acquiring
 - Shipping
 - Cleaning (HF wash) the SiC temperature monitors
 - Oxidization of one SiC monitor for resistivity method
 - One of the GE-Hitachi sample broke (two pieces) during cleaning
- Highlight:
 - All 10 NSUF SiC temperature monitors successfully delivered in time to process them all

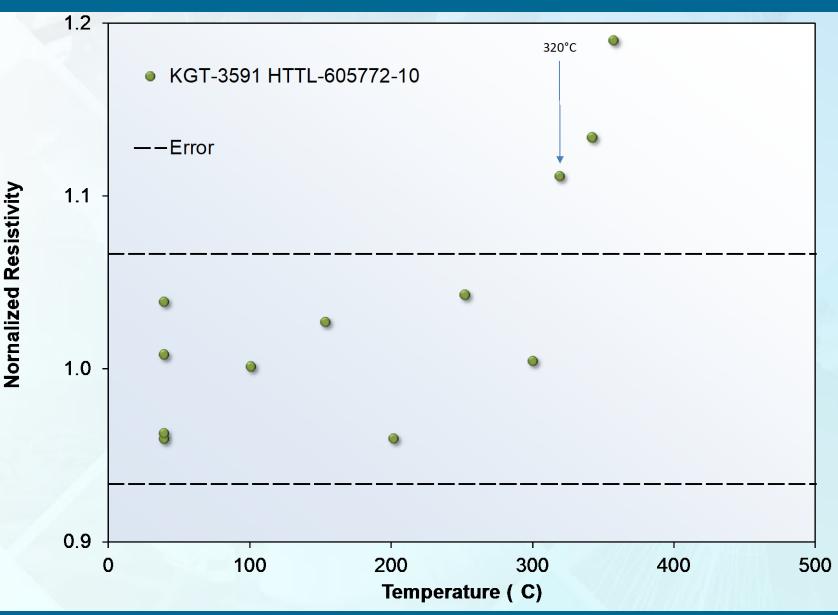
Benchmark Sample Selection


NSUF provided all 10 SiC temperature monitors:

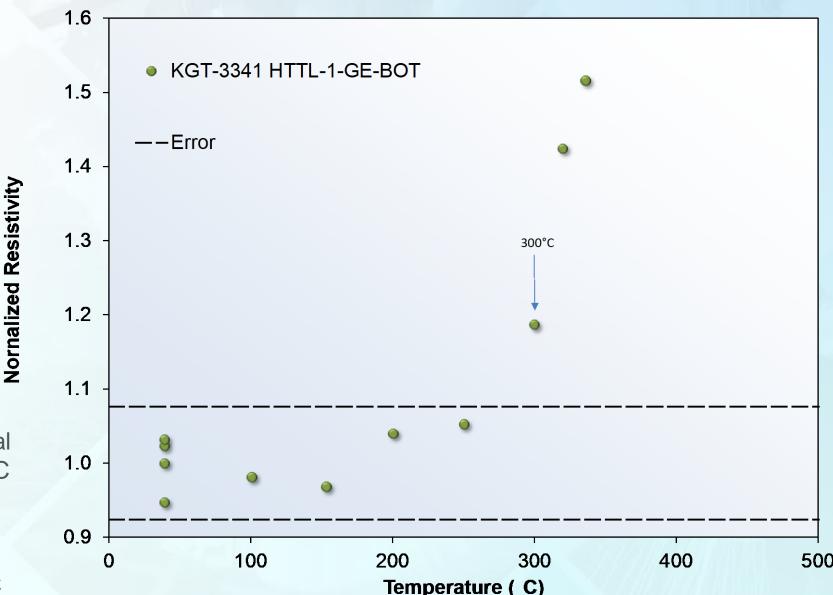
- Pair one for BSU-8242 are KGT-3591 and KGT-3597 with design temperature of 400°C and exposure of 3 dpa
- Pair two for GE-Hitachi are KGT-3341 and KGT-3336 (two pieces) with design temperature of 290°C +/- 50°C and exposure anywhere between 0.5-1 dpa

Sample	MSL Identification	HFEF	NSUF Project	T Design	Damage	Damage [dpa]Melt Wire Temp. Range [°C]		E valuation
Number		Identification	Name	[°C]	[dpa]			Method
1	HTTL-605766-10	KGT-3347	BSU-8242	300	1	Less than	238.6	Dilatometry
2	HTTL-605767-10	KGT-3357	BSU-8242	300	1	238.6	271.5	Dilatometry
3	HTTL-605768-10	KGT-3573	BSU-8242	300	3	-	_	Dilatometry
4	HTTL-605769-10	KGT-3360	BSU-8242	400	1	327.5	399.4	Dilatometry
5	HTTL-605770-10	KGT-3373	BSU-8242	400	1	399.4	499.5	Dilatometry
6	HTTL-605772-10	KGT-3591	BSU-8242	400	3	-	-	Resistivity
7	HTTL-605771-10	KGT-3597	BSU-8242	400	3	-	-	Dilatometry
8	HTTL-1-GEH-BOT	KGT-3341	Ge-Hitachi-393	290	0.5-1	327.5	399.4	Resistivity
9	HTTL-1-GEH-MID	KGT-3336	GE-Hitachi 393	290	0.5-1	327.5	399.4	Dilatometry
9'	HTTL-1-GEH-MID	KGT-3336'	GE-Hitachi 393	290	0.5-1	327.5	399.4	Dilatometry
10	HTTL-1-GEH-TOP	KGT-3339	GE-Hitachi 393	290	0.5-1	271.5	279.5	Dilatometry

Resistivity Results for BSU-8242


- An ohmic response curve was generated for each monitor prior to heating
- BSU-8242 SiC temperature monitor KGT-3591 exhibited a typical ohmic response
 - For this evaluation, voltage ranged between 4-8 V for both temperature monitors

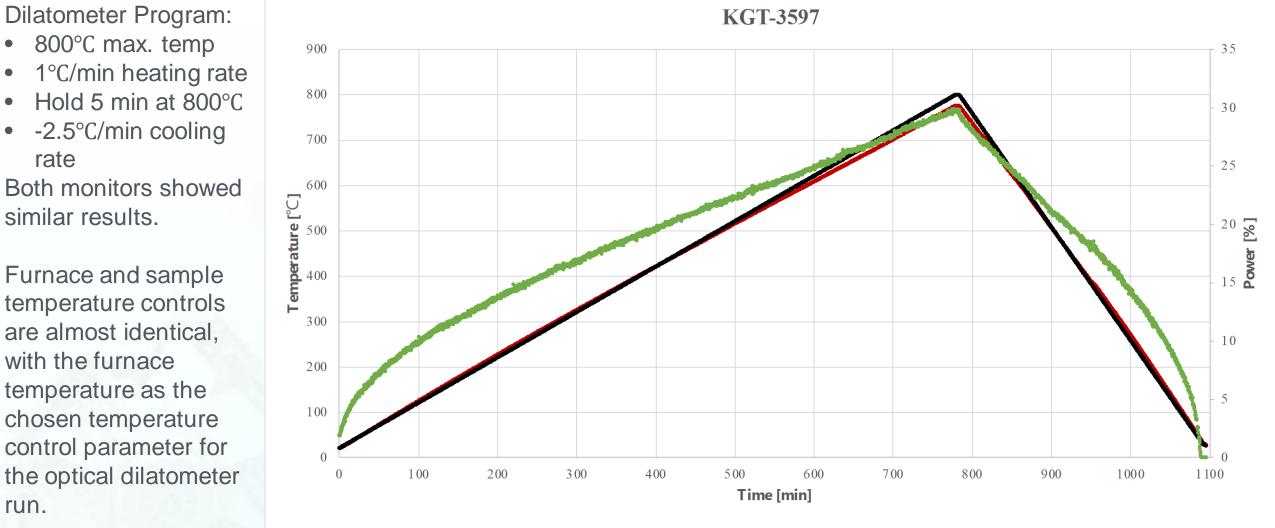
• Current • Resistance


Resistivity Results for BSU-8242 Cont.

- Evaluation data for BSU-8242 SiC temperature monitor KGT-3591:
 - T design is 400 °C
- The error band was based on a 2sigma value calculated from the data points collected up to 100°C
- The peak irradiation temperature for this monitor is evaluated at 320°C with +/- 20°C accuracy
 - 80 °C below T design
- Melt wire range was undetermined for this position

Resistivity Results for GE-Hitachi

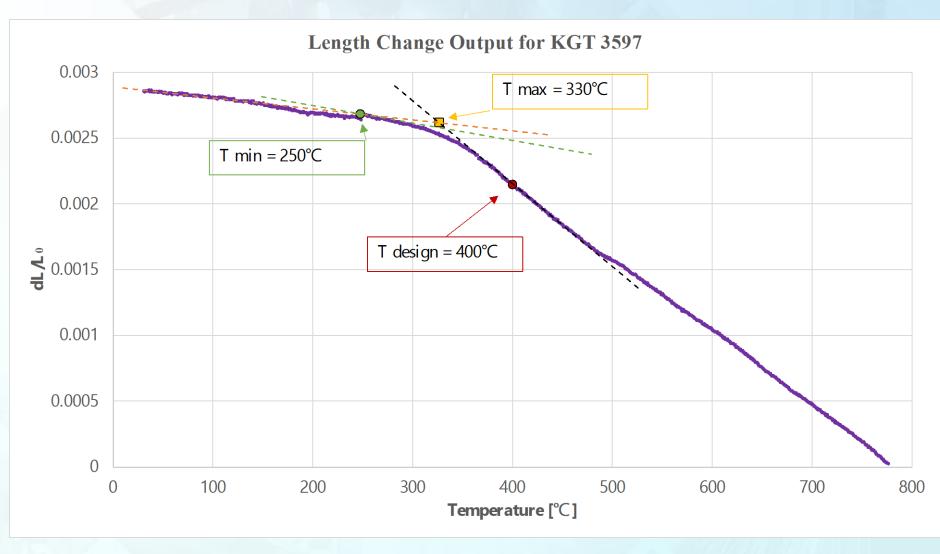
- Evaluation data for GE-Hitachi SiC temperature monitor KGT-3341:
 - 290 °C with +/- 50 °C
- The error band was based on a 2sigma value calculated from the data points collected up to 100°C
- The peak irradiation temperature for this monitor is evaluated at 300°C with accuracies between +20°C and -50°C
 - 10°C above T design
- The lower evaluation temperature was unexpected, thus larger isochronal heating steps were taken when the SiC temperature monitor responded ->lower error bound of -50°C
- Melt wire range was 327.5 to 399.4 °C



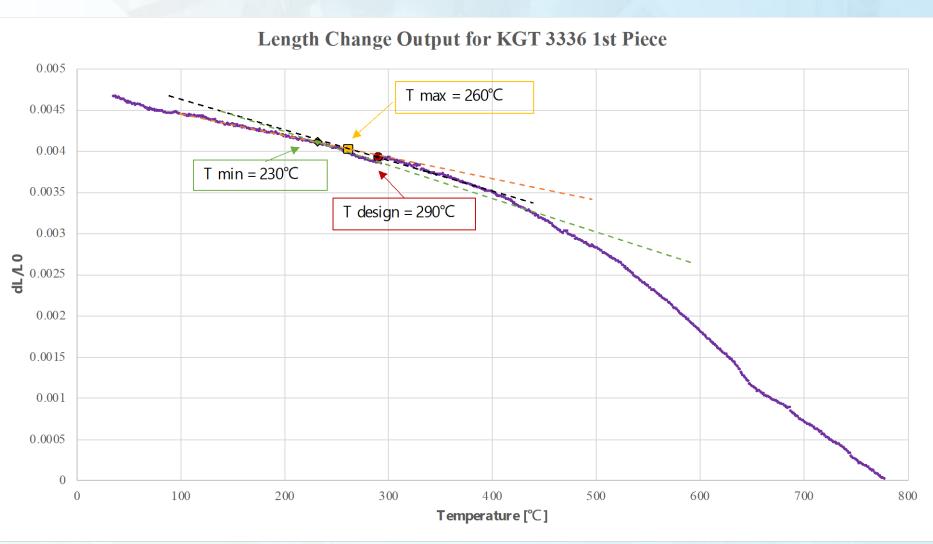
Dilatometry Results for BSU-8242

 ${\color{black}\bullet}$

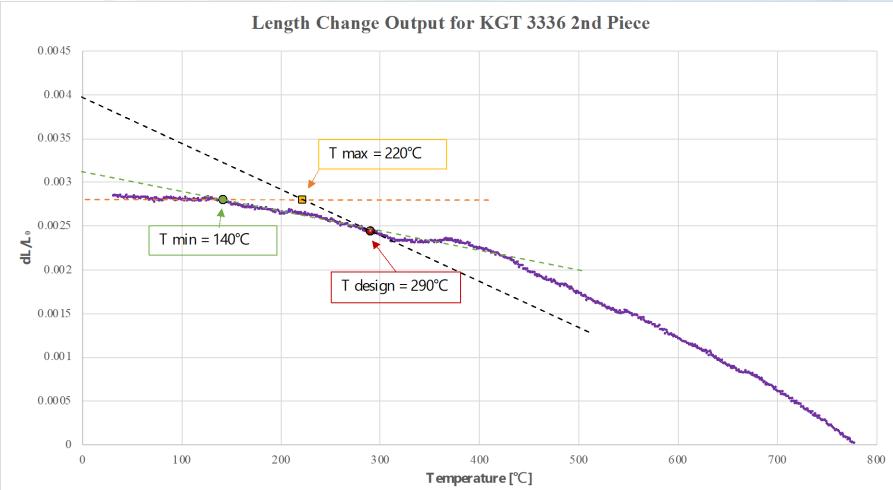
lacksquare


run.

• Sample temperature ∞C • Furnace temperature ∞C • Power %


Dilatometry Results for BSU-8242 Cont.

- Evaluation data for BSU-8242 SiC temperature monitor KGT-3597
- The irradiation started at ~250°C
- The peak irradiation temperature for this monitor is evaluated at 330°C
 - 70°C below T design
- Melt wire range was undetermined for this position
- Compared to resistivity method (320°C) for similar positioned -> very close results


Dilatometry Results for GE-Hitachi 1st Piece

- Evaluation data for BSU-8242 SiC temperature monitor KGT-3336 1st piece (length ~8125.6 µm)
- The irradiation started at ~230°C
- The peak irradiation temperature for this monitor is evaluated at 260°C
 - 30°C below. T design
- Compared to resistivity method (300°C) for similar positioned -> very close results due to the lower error bound
- Melt wire range was 327.5 to 399.4 °C

Dilatometry Results for GE-Hitachi 2nd Piece

- Evaluation data for BSU-8242 SiC temperature monitor KGT-3336 2nd piece (length ~4456.3 µm)
- The irradiation started at ~140°C (90°C lower than 1st piece)
- The peak irradiation temperature for this monitor is evaluated at 220°C
 - 70°C below T. design and 40°C below 1st piece
- Smaller pieces of SiC seem to have much harder results to read (almost flat line)

Summary of Results

Two pairs of SiC monitors were chosen:

- BSU-8242 -> KGT-3597 and KGT-3591 with T design of 400°C and exposure of 3 dpa
- Ge-Hitachi -> KGT-3341 and KGT-3336 with T design of 290°C +/- 50°C and an exposure between 0.5 to 1 dpa
 -> KGT-3336 SiC monitor was split into two pieces during decontamination process
 Evaluation of peak Irradiation temperatures are as follow:
- BSU-8242: Resistivity of KGT-3591 at 320°C +/- 20 °C and Dilatometry of KGT-3597 at 330°C
- GE-Hitachi: Resistivity of KGT-3341 at 300°C -50°C to 20°C and Dilatometry of KGT-3336 larger piece at 260°C Both methods of analyzing the SiC temperature monitors showed very similar peak irradiation temperatures for each pair of the SiC passive monitors.

Pair Number	MSL Identification	HFE F Identification	Design Temp.[°C]	E xposure [dpa]	E valuation Method	Irrad. Temp. [℃]	Delta with T design
1	HTTL-605771-10	KGT-3597	400	3	Dilatometry	330	-70
	HTTL-605772-10	KGT-3591	400	3	Resistivity	320	-80
2	HTTL-GEH-BOT	KGT-3341	290	0.5-1	Resistivity	300	10
	HTTL-GEH-MID	KGT-3336	290	0.5-1	Dilatometry	260	-30

Conclusion and Future Work

- Conducted a benchmark analysis between the optical dilatometer and resistivity method using two pairs from each NSUF experiment's SiC temperature monitors
- Encounter multiple delays in acquiring, shipping, and cleaning the SiC temperature monitors
- The GE-Hitachi KGT-3336 was split into two pieces during cleaning process
- Results revealed continuous optical dilatometry to be a valid method of measuring the peak irradiation temperature of passive SiC temperature monitors
- The optical dilatometer uses an automated process that only requires a small amount of time to run and is easy to use, thus saving on valuable labor time in comparison to the traditional resistivity method
- Future work will focus on analyzing SiC discs (5-mm and 3-mm)

Malwina Wilding

Contact information ->

Nuclear Instrumentation Engineer (INL) malwina.wilding@inl.gov W (208) 526-1674

Office of **NUCLEAR ENERGY**

Advanced Sensors and Instrumentation

Thank You

