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Program Overview: BSU Supporting Activities

To establish research capabilities, analysis methods, sensor and materials optimization, and
provide sensor fabrication support with the INL. The research activities at BSU are continuing to
use advanced manufacturing processes in combination with a foundational materials science and
engineering approach that includes modeling and simulation. The research program is rapidly
advancing the design and development of sensors at BSU in close collaboration with the INL. The
program is significantly contributing to the DOE-NE mission. The sensors focused in this research
are designed for in-situ and in-pile applications to be used in instrumented experiments.
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Richard Create a drift model on commercially available TCs, including types K, N, C, and B, then implement on HTIR-TC designs during AGR 5/6/7
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Improve and optimize the printing process of piezoelectric inks (compatible with aerosol jet printing (AJP)) for AM of piezoelectric
PRINTED SENSORS FOR HARSH Mike Dave 3 1 3 ) surface acoustic wave (SAW) devices for sensing in harsh environments. Develop heterogenous integration methods to printed sensors.
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Project Overview: Nuclear Thermocouples

OVERVIEW

Purpose:
Real-time temperature measurement is arguably the most important operational parameter to measure for the

characterization of irradiation experiments and the control of power plant systems. The high temperature irradiation
resistant thermocouples (HTIR TCs) have been extensively researched over the last decade and models have
been developed to predict their Seebeck Coefficient, Electromotive force, and decalibration.

Research will be completed to apply these models and applications to other prevalent commercially available
thermocouples, including: type-K, N, and B. Appropriate data sets for each must be presented and compared to the
HTIR-TC Drift Model found in INL/EXT-21-63346

Research will also focus on developing an understanding of the mechanistic behavior of HTIR-TCs resulting in
decalibration when they are exposed to excessively high temperatures and neutron fluxes for extended periods of
time.

Objectives:
» Use the HTIR-TC drift model on other commercially available thermocouples including Type-K, N, B

» Develop mechanistic understandings of HTIR-TC drift and stabilization

DETAILS

Principal Investigator: Brian Jaques (BSU)
Richard Skifton (INL)

Institution: Boise State University
Collaborators: Idaho National Laboratory

TPOC (Technical Point of Contact): Troy Unruh (INL)

Federal Manager: Daniel Nichols

PICS:NE Workpackage: CT-22IN070204 — Thermocouples

PATH
Use the HTIR-TC drift model on other commercially available thermocouples including Type-K, N, B
« From literature, compare drift model to drift data at high temperatures or during irradiation tests
« Compare drift model to HTIR-TC performance in AGR 5/6/7
< Perform thorough literature review of available thermocouple data
Develop HTIR-TC mechanistic understanding to include reporting on:
« DSC testing
Prolonged furnace testing
Separate effects testing
Microstructural and chemical characterization

RESULTS

Literature was compiled to develop a drift model (f{temp, time, flux))
HTIR-TCs perform similar to N and K TCs for a neutron fluence of 102" N/cm2 up to 1200 °C.
HTIR-TCs have minimal drift up to 1500 °C.
Nb-P thermoelement is drift culprit — Mo-LaO appears stable
» Exothermic reaction observed in Nb-P thermoelements
+ Alumina interactions between the thermoelement-insulation (Nb-Al,O,) interface were observed.
» Formation of Nb,P precipitates after 1450 °C heat treatment
» Recrystallization was observed after heat treatment
« Heat treatment results in nucleation of fine grains (Mo)
Lit review identified alternative insulating ceramics to compare to Al,O;:

- Sic

. Hfo, - MgO

Thermoelement: Nb-P

Thermoelement: Mo-LaO




How do HTIR-TCs Compare?

Thermocouple? HTIR-TC Type K Type N Type B
Mo Chromel Nicrosil Pt — 30%Rh
Materials VS. VS. VS. VS.
Nb Alumel Nisil Pt — 6%Rh
Temp Range 0-1700 °C -270 - 1260 °C  -270-1260 °C 0-1700 °C
Cost ~$250 /ft ~$30 /ft ~$50 /ﬂ ~$250 /ﬂ
Radiation Tolerance
as compared to HTIR- 1/ ’ Oth 1/ 4th 1/ 1 OOth
TC
1220 B
\ g §F ; R : 2 : . NOTE: Gen IV - Very high temperature reactor Core Temperature3: >1200°C
1200 urnmace {e Srence efmpera ure
O 1eof :
g _ : : i . .
e R e R HTIR-TC combines the high temperature of the Type B
Emo . SRR NI P — thermocouple with the radiation tolerance of Type N & K.
FHD b no vsons v ..... N TypeN \-.
4100 + . 3 ' 2. Data courtesy of Dr. Skifton, INL
] 1000 2000 3000 4000 5000 3. Murty K., Charit |., An Introduction to Nuclear Materials. Vol. 1, Wiley-VCH, 2013, Weinheim, Germany.




Background and Motivation
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Drift Model: Temperature Comparison
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Drift Model: Temperature and Fluence Comparison
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Nuclear Thermocouples: Seebeck Coefficient
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Power Laboratory Technical Note, (1999).
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A) The EMF signal does not vary with increasing stabilization heat
treatment temperature. After the stabilization heat treatment,
prolonged exposure to temperatures below the stabilization heat
treatment temperature did not impact the EMF signal.

B) An interaction region is observed between the interface of the Nb-
P thermoelement and the alumina insulation during the stabilization
heat treatment.

Interaction with

Interaction with

Thermal adsorption

Insulator Niobium Onset References Molybdenum Onset References Meltll:g point cn?ss-sectlon
Temperature Temperature (°C) (°C) v, = 2200 m/sec

c) P (Barn)
SiC 1300 39 1500 40,43 2730 3.86

HfO, 1300 38,41 2758 104.10
Al O, 1450 37, 38, 42 2072 0.23
BeO 1600 38, 42 2578 0.01
Mgo 1800 42 2852 0.06
ThO, 1800 42 3390 7.37



Nuclear Thermocouples: Insultation Considerations
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MgQ’s chemical stability with the HTIR-TC thermoelements, low thermal adsorption cross-section, and
high resistivity above 1500 °C make it an apparent candidate for the HTIR-TC insulator.

Dauvis et. al. The effect of environment on ceramic insulators for nuclear thermionic applications. Nuclear Applications of Nonfissionable Ceramics. Alvin Boltax and J.H. Handwerk, eds., American Nucl. Soc. 1966, pp229-246.
John Mayer. Summary of radiation effects on thermionic insulator materials. NASA technical note, 1968.

John Boland, Nuclear reactor instrumentation (in-core), 150 Fith Avenue, New York, N.Y. 10011: Cordon and Breach 1970.



Project Overview: Acoustic Sensors

Research goal: Develop magnetostrictive and piezoelectric ultrasonic waveguide thermometer
(UT) that can measure in-pile temperature through speed of sound

Point of Contact: Joshua Daw (INL); Zhangxian (Dan) Deng (Boise State University)

Students: Joy Morin (PhD student), Drew Keller (MS student), Alex Draper (Undergraduate),
Ashton Enrriques (Undergraduate)

Research Scope (FY22):
Enhance the thermometer performance based on finite element modeling
Validate the thermometer at elevated temperatures

Investigate new options of magnetostrictive waveguides
Unit: mm
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Technology Impact

Motivation:

» The number of worldwide operational nuclear reactors increased from 230 to 443 from 2009 to
2019

« Atotal of 11 core melt accidents have occurred worldwide since 1952, including the Chernobyl
and Fukushima disasters

Needs:

Ultrasonic transducers that can

» Fitin tight spaces inside fuel claddings (Small form factor)
» Withstand gamma and neutron flux radiation

» Detect centerline temperatures exceeding 1500 °C




Signal Processing

Hilbert Transform (Time Domain)
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Findings: Wavelet analysis is more reliable.

Wavelet Analysis (Frequency Domain)
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Optimize Waveguide Location L,

Decreasing L,
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Findings: Optimal L, = 82.5 mm (from both finite element modeling and experimental trial and error)




High-temperature Test

Experimental Setup Acoustic Waves at Various Temperatures

LabVIEW
cDAQ

B&K DC
power supply

Thermocouples Ultratek 3160
® AC coil bobbin ™ DC coil ® Galfenol AC coil

Findings: The signal to noise ratio is >30 dB up to 110 °C if the
first two reflections were selected in calculation
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High-temperature Test

Sensitivity Acoustic Attenuation
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Findings:

+ Sensitivities of Galfenol (FeGa) UT and Remendur (FeCoV) UT are 162.8 PP™/.. and 107.3 PP"/., respectively
» The resolution of the Galfenol UT is 64% smaller than that of the Remendur UT at the same frequency
« Galfenol UT exhibits nonlinear sensitivity and acoustic attenuation



New Magnetostrictive Waveguides
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Findings:

+ Thin and flexible Galfenol waveguides are available from a new vendor;
preliminary results have confirmed their functionality

* Thinner waveguide helps to reduce acoustic attenuation

» Coils needs to be re-designed to minimize magnetic flux leakage and
enhance the signal-to-noise ratio.
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Printed Sensor Technologies for Harsh Environments

OVERVIEW

Purpose: Enable novel sensor designs through advanced manufacturing. Once the feasibility of the fabrication
process is validated, advanced manufactured sensors will be deployed in relevant irradiation tests within NEET
ASI activities as well as through other awarded irradiation testing proposals. Focus is on sensors for advanced
structural health monitoring.

Objectives:

Improve and optimize the printing process of piezoelectric inks
Additively manufacture piezoelectric surface acoustic wave (SAW) devices for sensing in harsh environments

Develop heterogenous integration methods to printed sensors
Improve and optimize printed capacitive strain gauges (CSGs)
. Develop strain validation techniques (DIC, RSGs, etc)
. Increase the robustness of printed sensors at elevated temperatures (650 °C)
+ Quantify the adhesion strengths of printed films using destructive techniques

Outcomes: Development of advanced manufacturing methods and capabilities to enable transformative sensor
technology for in-pile monitoring and in-situ analysis of fuels and materials that are not otherwise achievable
through classical fabrication techniques.

» Develop novel nanoparticle inks with improved materials for harsh environments that are compatible with AJP.

Carrier
Gas In (qJ)

Ultrasonic Atomization of
Nanoparticle Ink

AJP of SAW devices

DETAILS

Principal Investigators: David Estrada (BSU)
Michael McMurtrey (INL)

Institution: Boise State University
Collaborators: Idaho National Laboratory

TPOC (Technical Point of Contact): Troy Unruh (INL) *

Federal Manager: Daniel Nichols

PICS:NE Workpackage: CT-22IN070205 —
Printed Sensors Technologies for Harsh Environments

RESULTS

Results:
» Digital image correlation was used to measure strain (up to 1100 pe) during cyclic tests at 23-600 °C.
» Small scale periodic patterns were printed using aerosol jet printing for digital image correlation.
» CSG, RSG, ,and adhesion results will be presented in the next presentation (Mechanical Properties
Characterization) by Michael McMurtrey and Tim Phero.
» Novel synthesis techniques were developed for nanoparticle LiNbO; ink formulations
« Controlled stoichiometry
* Lowers the reaction temperature of calcination
« Produces greener biproducts
* Increases phase purity of final product
» Aerosol jet printing (AJP) of the reactive LiNbO; ink was performed for the first time.




Technology Impact

Motivation:

* RA&D of novel in-pile sensors capable of thermometry and structural health monitoring can reduce
O&M costs of reactors and improve safety through live status monitoring.

« Utilize advanced manufacturing techniques for rapid prototyping of sensors for harsh environments.

» Expand the library of materials compatible with AJP, including high temperature conductive
nanoparticle inks and piezoelectric nanoparticle inks.

Needs:

* Process improvements to increase consistency
and predictability of outcome for AJP

« Conductive material inks for AJP that are
resistant to thermal and nuclear radiation

» Piezoelectric nanoparticle inks that can be
deposited directly onto host structures like
steel, allowing for integration of SAW
devices directly onto reactor components

Coating Thickness vs. Print Speed with AJP Silver
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High Temperature Nickel Nanoparticle Ink

1. Ethylene Glycol *  The polyol synthesis was used to generate
1000 2. PolyvmylpyﬂolldO; PVP capped nickel nanoparticles
e 3.150°C Nickel nanoparticles  «  TEM revealed grain sizes up to 5 nm, and
4. NaBH, aggregates of ~200 nm

+ Rheological studies were performed to
develop the ink system showing an
average hydrodynamic particle size of ~80
nm for the selected co-solvent system

* Nick’s nickel nanoparticle ink was used to
print various structures including
piezoelectric SAW devices

« Sintering conditions have been determined
and ink has been nearly fully optimized
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Reactive Piezoelectric Lithium Niobate Ink
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*  Niobium oxide particles were ball milled to produce nanoparticles <100 nm after 24 hours mill time
* An AJP ink was synthesized by suspending Nb,O; in an aqueous lithium hydroxide solution
*  Preliminary printing studies have been performed to some degree of success
* Reaction conditions have been determined for thermal combustion and product synthesis
*  Phase pure product formation has been observed after deposition onto surface
*  Future directions
*  New ink formulation with improved particles and ink stability
*  Piezoelectric testing of AJP fabricated LiNbO; films



Printed Patterns for Digital Image Correlation

Digital Image Correlation (DIC) is a non-contact
process to measure strain with the use of a camera
and a speckle pattern in the region of interest
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Validating DIC Results
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Printed Sensor Technologies for Harsh Environments

Mechanical tests were conducted with digital image correlation (DIC) at 100°C, 200°C, 300°C, and 600°C on SS316L substrates
The printed 150 uym spaced line pattern tabulated similar strain values to the data read by the extensometer.
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U.S. DEPARTMENT OF

ENERGY

Office of
NUCLEAR ENERGY

Student successes:

Nick McKibben — Successfully defended his dissertation proposal and advanced to candidacy in April
Kiyo Fujimoto — NEUP fellow, INL Grad Fellow at INL HTTL, Successfully defended dissertation in
March

Timothy Phero — INL Grad Fellow at INL HTTL

Kaelee Novich — NEUP Fellow, INL internship (currently)

Kati Wada — NEUP Fellow, internship at INL HTTL for summer 2022

American Nuclear Society formally recognized the BSU Nuclear Energy Club as an ANS Student
Section in May of 2022

Timothy Phero and Kaelee Novich were awarded Graduate Scholarships from the American Nuclear
Society

Publications

1. “Additively manufactured strain sensors for in-pile applications.” T.L.Phero, K.A. Novich, B.C.
Johnson, M.D. McMurtrey, D. Estrada, and B.J. Jaques®. Sensors and Actuators A: Physical. Vol.
344, pp. 113691, 2022. DOI: 10.1016/j.sna.2022.113691

Submitted Publications

1. "Magnetostrictive Ultrasonic Waveguide Transducer for In-pile Thermometry." D. Keller, B. Robinson,

A. Draper, A. White, J. Daw, and Z. Deng, IEEE/ASME Transactions on Mechatronics (in print)

2. "Multi-Modal Printed Interconnects for Flexible Hybrid Electronic Applications,“ S. Seva, T. L. Phero,
A. Olivas, J. Manzi, T. Gabel, T. Varghese, T. R. Dabrowski, J. D. Williams, D. Estrada, H.
Subbaraman, Flex. Print. Electron. Submitted.
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