

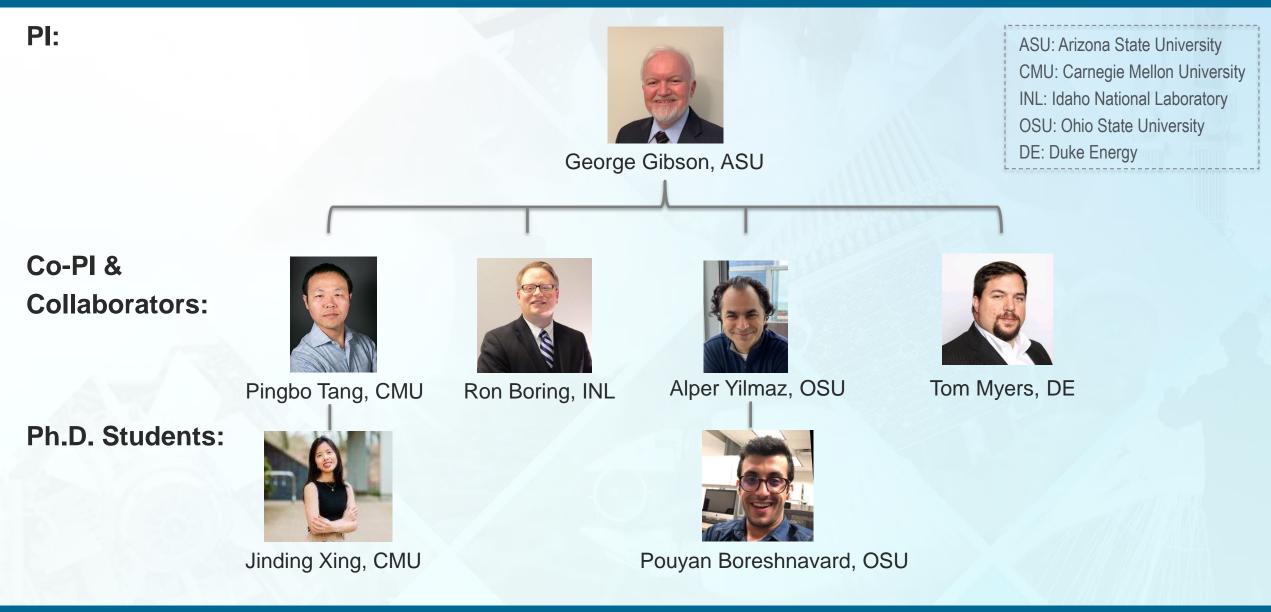
Context-Aware Safety Information Display for Nuclear Field Workers

Advanced Sensors and Instrumentation (ASI) Annual Program Webinar October 24 – 27, 2022

Presenter: Pingbo Tang, PhD, Associate Professor

Carnegie Mellon University/Civil and Environmental Engineering

Project Overview – Research Scope

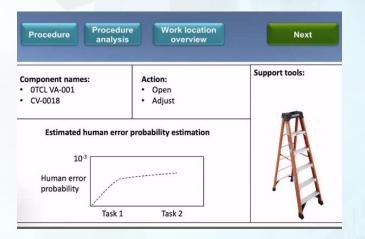


Objectives

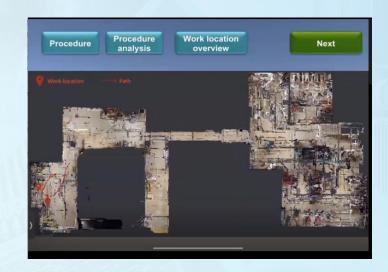
- The developed display should integrate the real-time overlay of physical workspaces with maintenance processes and safety information visually displayed through Augmented Reality (AR) glasses.
- The purpose of the display is to assist and guide field workers in assessing workspace risks, locating task-relevant objects, and carrying out the tasks in the correct order in a safe manner.

Research areas	Human reliability		Work process mo	odeling	Operation safety			
Major techniques	Survey and interview	А	ugmented Reality	Computer vision		Natural language processing		
Outcomes			publish research pro Glasses with context					

Project Overview – Participants

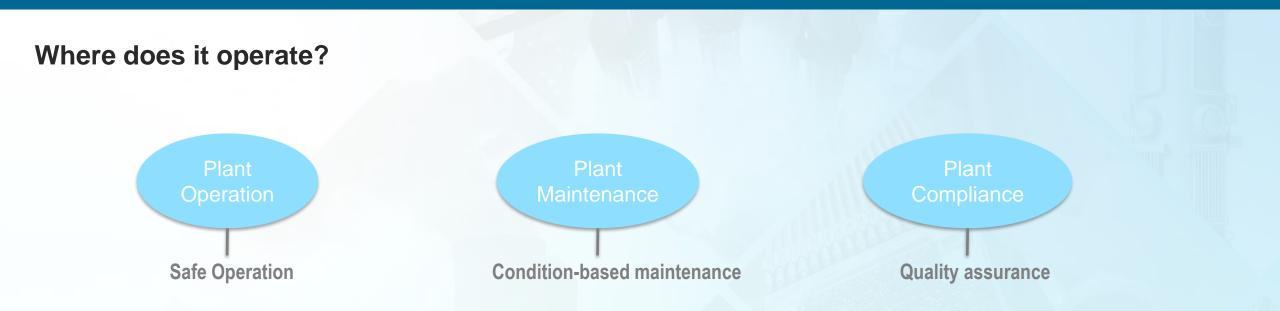

Technology Impact – AR Display

The interface of the developed display


Operation guidance

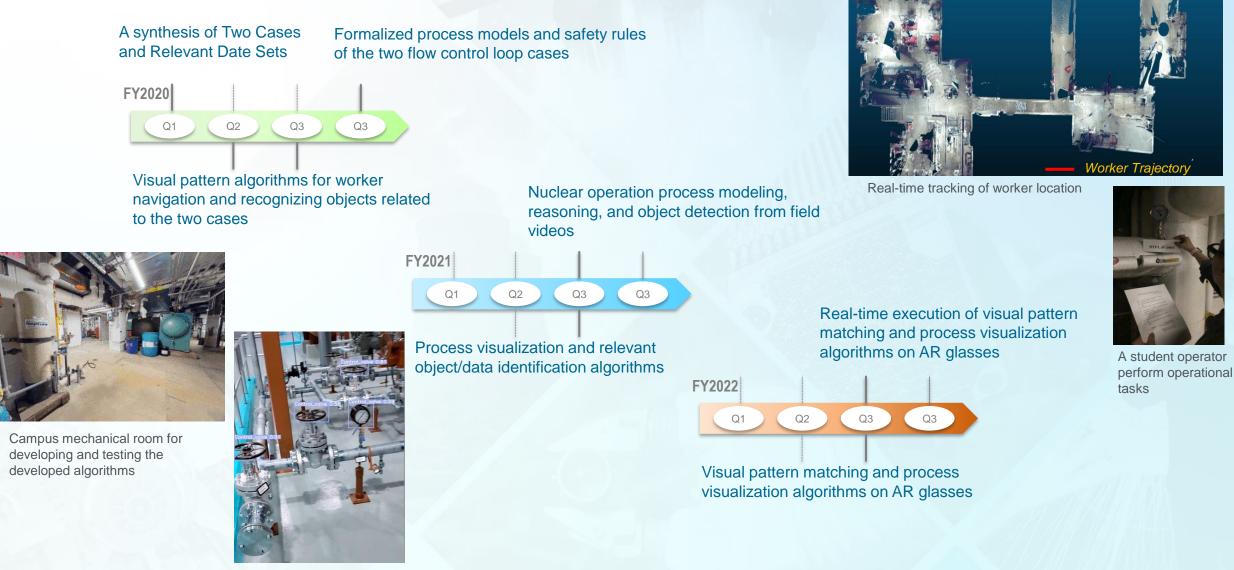
Safety hazards information

Highlight critical object



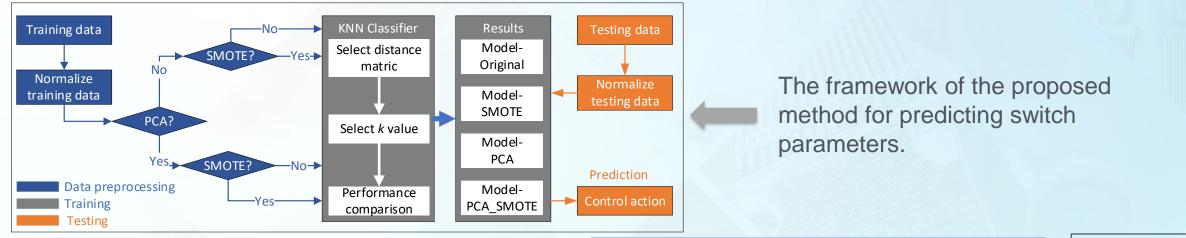
Path planning and real-time worker locating

HoloLens 2 AR display for Nuclear Field workers


Technology Impact – Description of the Technology

Who should be interested in this technology?

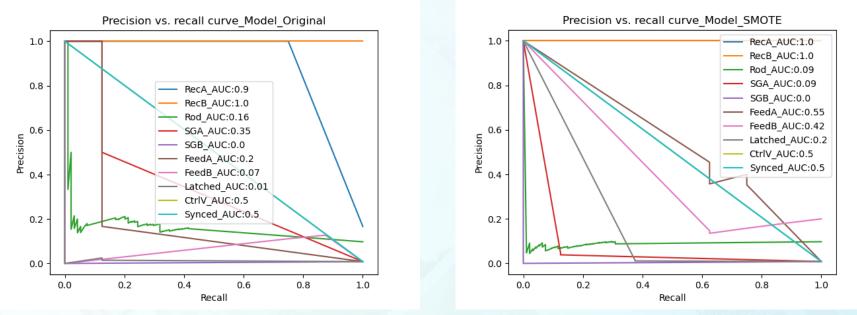
- Personnel (e.g., field operator) conduct operation activities outside the main control room.
- These activities include:
 - Starting and stopping electricity generation equipment as needed
 - Overseeing readings and making observations to establish system goals and get to know the status, thereby taking
 actions to correct any detected equipment problems


Results and Accomplishments – Overview

Computer vision for detecting control objects

Results and Accomplishments – Work Conducted in FY22

Algorithm for Analyzing Operation Logs of Nuclear Power Plants for Safety and Efficiency Diagnosis of Real-Time Operations.


The operating state of NPP at a specific time is represented by a set of analog parameters and switch parameters. The changes of switch parameters reflect the operator's control decision.

Time (s)	Work status (control action/wait)	Core temperature (DEG F)	Cooling flow (KPPH)		,	Model input: Time series of	
1	Wait	181.16	20.45	_I		analog parameters	
2	Valve A ON	182.50	20.22			seconds	
3	Rod 1	184.03	20.12				
4	Wait	185.60	20.11			odel output:	
5	Valve B ON	187.40	20.09			ork status at the urth second	
6	Rod 1	189.23	20.08				

Jinding Xing, Pengkun Liu, Pingbo Tang, Alper Yilmaz, Ronald Laurids Boring, George Edward Gibson Jr, Analyzing Operation Logs of Nuclear Power Plants for Safety and Efficiency Diagnosis of Real-Time Operations. In 29th International Workshop on Intelligent Computing in Engineering, EG-ICE 2022. Aarhus, Denmark.

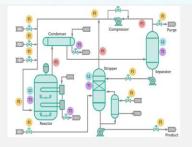
Results and Accomplishments – Work Conducted in FY22

Algorithm for Analyzing Operation Logs of Nuclear Power Plants for Safety and Efficiency Diagnosis of Real-Time Operations.

This study proposed a variant of models based on KNN classifiers that uses analog parameters to infer the most suitable control actions.

The testing results indicate that the model with SMOTE data (F1 score 0.323) augmentation has better prediction performance than the models without SMOTE (F1 score 0.263).

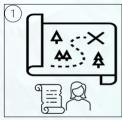
Jinding Xing, Pengkun Liu, Pingbo Tang, Alper Yilmaz, Ronald Laurids Boring, George Edward Gibson Jr, Analyzing Operation Logs of Nuclear Power Plants for Safety and Efficiency Diagnosis of Real-Time Operations. In 29th International Workshop on Intelligent Computing in Engineering, EG-ICE 2022. Aarhus, Denmark.

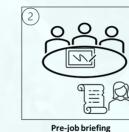

Results and Accomplishments – Field Interview and Survey

Surveyed and interviewed 45 experienced nuclear field operators in the U.S. Created a classification of critical information for different tasks and contexts:

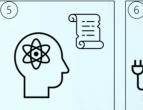
Three type of information

Workspace dynamics: the location, quantity, size, and state of components on the work package timelines.




Workflow prognostics: the dependency between the function of a component and process variables.

Hazards: Unique hazards such as radiation, confined spaces, or conditions that may pose a danger to personnel or damage component.



Response planning

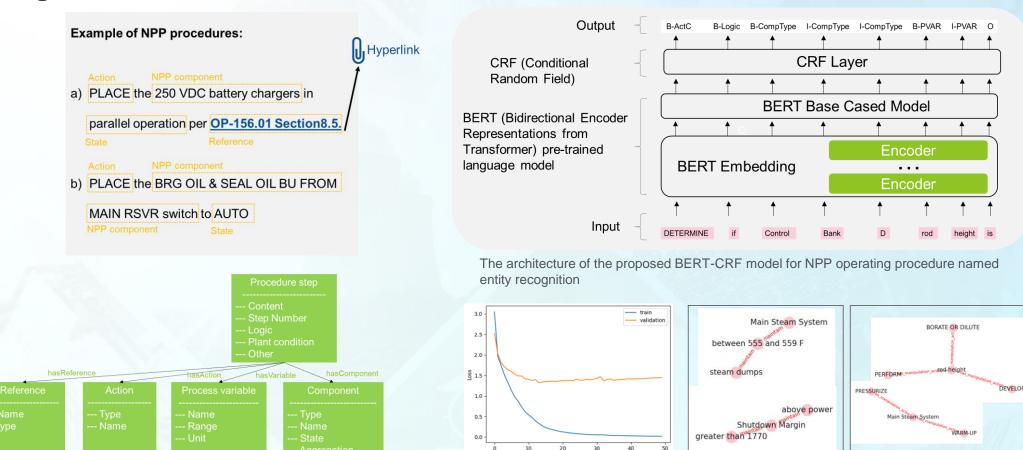
Walkdown the procedure

Place-keeping

Walk to the target work location

Response implementation

Results and Accomplishments – Field Interview and Survey


Surveyed and interviewed 45 experienced nuclear field operators in the U.S. Created a classification of critical information for different tasks and contexts:

ltems F1 F2 F3 Conbach spha RH_x Ran apha		Stages	Stages Information		nation t	ype	Reliability	Rank				
Walkdow I6. Quantity and/or size of tools or protective n the equipment required to perform this procedure 0.86			0.92 70.73 20			\	Y			γl		
17. Av suits	Availability of the support tools or protective 0.77 Location of the support tools or protective 0.87		74.39 69.92							Cronbach'		
	Exception or limits in the applicability of the ons, types of equipment, or support tools.		73.75	7				-	50	ci c	DU	Ran
of the	. Present status of the component, e.g., state he component must exist before performing 0.61 procedure.		82.52	3		Items	F1	F2	F3		RII_v	k
Pre-job I8. Lo briefing suits. stag	Location of the support tools or protective 0.75		71.54	9						alpha		
	Quantity and/or size of tools or protective pment required to perform this activity 0.71		72.36	8	XX 7 11 1					3		
	Exception or limits in the applicability of the 0.66 ons, types of equipment, or support tools.		80.89	4	Walkd	I6. Quantity and/or size of tools or protective	0.86			0.92	70.73	20
	nitial state of the component, e.g., the state of component must exist before performing the redure.		85.37		own the	equipment required to perform this procedure	0.00			0.72	10.15	20
	The data is to be recorded per the irements of the procedure. 0.60		80.42	5	proced					23		
Place- keeping procee	Step number of the present activity in the edure.	0.74	0.91 82.93	2	ure	[•] 17. Availability of the support tools or protective	0.77				74.39	16
planning chang	The difference (e.g., rate and direction of age) between the component's present state the initial state specified in the procedure.	0.67	86.25		•	suits.						
	Dependency among equipment/sensors lved in the present activity.	0.78	86.99	5		Identified support gap					6.14	
implement langu	. The specific meaning of the constrained uage used in the present activity such as open valve or ensure the valve is open.	0.69	88.03	5								

Identified information that are critical for ensuring worker safety

Results and Accomplishments – Overview

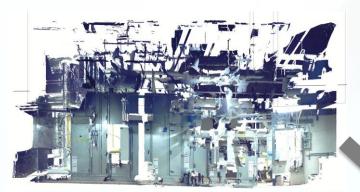
Natural Language Processing (NLP) for automatically extracting critical information from work packages.

Procedure step, reference, action, process variable and component are types of critical information included in the procedures.

Training results trained on 50 epochs

Epoch

Visualizing and reasoning process safety constraints, component properties by querying the knowledge graph.


Control action: manipulation (left),

check (right)

Maintain

Results and Accomplishments – Augmented Reality Development

Marker-less AR for the NPP field operations

3D scan of the campus mechanical room

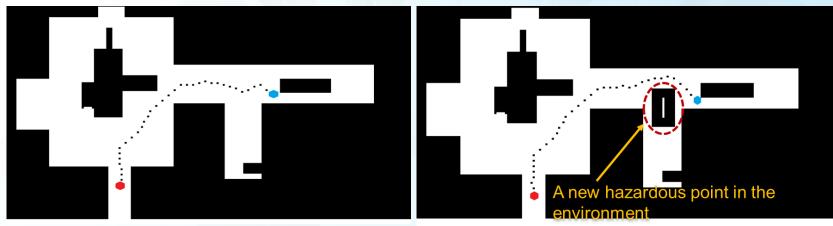
Vuforia area target generator to extract visual features for AR tracking and registration of the augmented information

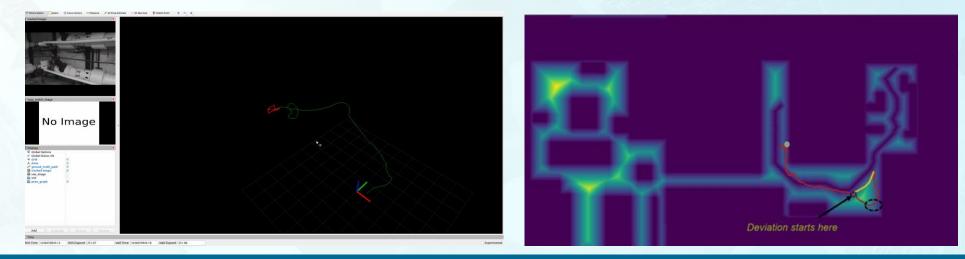
Non-recursive Bayesian Filter based real time worker locating

Sunity

Unity engine as the development platform

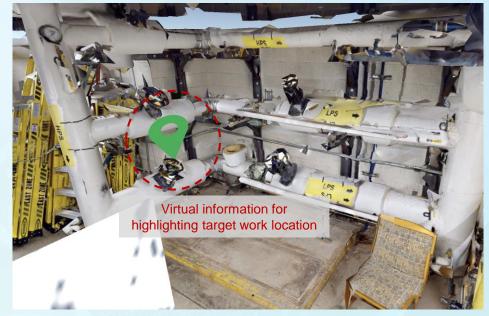
NLP-based work package information extraction


HoloLens 2 AR display for Nuclear Field workers


Scan the QR code to view the AR demo video

Results and Accomplishments – Dynamic Indoor Navigation

Online hazard location and path planning by considering hazards and safety constraints.


Real-time tracking for detecting deviations from the planned path

Addressed Challenges

Addressed challenges:

- Reliable highlights of operations and relevant objects in a noisy background (with similar objects closely located) in the AR video views
 - Vuforia area target generator to extract visual features from prescanned sparse point cloud for object tracking and virtual information alignment.
- Real-time tracking for detecting deviations from the planned path
 - Non-recursive Bayesian Filter (NBF) for correcting deviation in worker trajectory prediction
 - NBF is a probabilistic approach to use incoming measurement along with prior info to predict the next measurement (correction)

Align the virtual information in environment with many similar valves closely located

Remaining Challenges for Field Implementation

Remaining challenges:

- Time consuming to scan the point cloud model of commercial power plants
- Hardware, most AR Glasses have limited computation capability
- Ergonomics, such as limited field of view, view occlusion
- Reliability of the AR support tool, such as the quality and alignment accuracy of the visual information

AR is a powerful tool to improve operation safety and productivity:

- Best practice for using AR: identify the right scope of work, people and groups
- Identify potential human error traps related to using AR and develop strategies

Publications

Liu, Pengkun, Jinding Xing, Ruoxin Xiong, and Pingbo Tang. Sharing Construction Safety Inspection Experiences and Site-Specific Knowledge through XR-Augmented Visual Assistance, Proceedings of the 1st Future of Construction Workshop at the International Conference on Robotics and Automation, Philadelphia, U.S.A, May 23, 2022

Xing J., Liu P., Tang P., Yilmaz A., Boring R., Gibson Jr G. Analyzing Operation Logs of Nuclear Power Plants for Safety and Efficiency Diagnosis of Real-Time Operations, 29th International Workshop on Intelligent Computing in Engineering (EG-ICE), Aarhus, Denmark, July 6-8, 2022

Kochanek, S., Xing, J., Yilmaz, A., Gibson, G. E., and Tang, P. Using Computer Vision to Reduce Human Errors of Operating on the Wrong Control Valves in Nuclear Power Plants. Proceedings of the 13th International Conference on Applied Human Factors and Ergonomics (AHFE 2022), New York, New York, USA, 10 pages, July 28, 2022.

Pingbo Tang

Associate Professor

ptang@andrew.cmu.edu

Civil and Environmental Engineering, Carnegie Mellon University 5000 Forbes Avenue, Pittsburgh, PA 15213

Office of **NUCLEAR ENERGY**

Advanced Sensors and Instrumentation

Thank You