

CONTROL OF MICRO-REACTORS

ANTON MOISSEYTSEV Argonne National Laboratory

Advanced Control Systems Workshop Argonne National Laboratory July 12, 2023

GOALS

- Analysis of flexible operation of a micro-reactor
 - Load following
- Development and simulation of control strategy
- Using Argonne system analysis tool
 - Plant Dynamics Code
- Calculations are carried out for Holos-Quad micro-reactor

HOLOS-QUAD MICRO-REACTOR

- Holos-Quad micro-reactor concept developed by HolosGen LLC
 - High-temperature gas-cooled reactor
 - 4 neutron-coupled Subcritical Power Modules (SPMs)
 - 22 MW_{th} (10 MW_e)
 - Lifetime of 8 EFPY
- Each SPM integrates & seals its power conversion system
 - Inspired by turbojet engine
- Direct helium Brayton cycle for energy conversion

LOAD FOLLOWING ANALYSIS

- Goal: investigate Holos-Quad design capability for load following
 - Load following: ability to effectively operate at power output <100%
 - Target: match 10%/min grid/load demand change from 100% to 0% and back
- Approach
 - Transient calculations
 - Simulated in ANL Plant Dynamics Code (PDC)
 - Integrated reactor/cycle analysis —
 - Identify possible control mechanisms _
 - Simulate and analyze LF by each control

ANL PLANT DYNAMICS CODE (PDC)

- Developed at Argonne originally for supercritical CO₂ cycles
 - Special attention to complex CO₂ properties
 - Detailed solution
 - Copyrighted in 2018 by Argonne
 - Helium properties for Holos-Quad
- Steady-state analysis
 - Performance of each component (HXs, TM)
 - Integrated cycle performance (efficiency)
 - Piping pressure drop
 - Integrates TM design
- Dynamic calculations
 - Cycle control mechanisms and analysis
 PID Controllers
 - HX thermal inertia and performance
 - TM off-design performance
 - Piping inertia and heat losses

HOLOS-QUAD PLANT CONTROL MECHANISMS

HOLOS-QUAD CONTROLS

- Factors all possible (traditional) Brayton cycle controls
 - Bypass
 - Turbine bypass
 - Low Temperature (LT) version
 - Throttling
 - Turbine
 - Compressor
 - Inventory
- Holos-Quad specific
 - Compressor speed
- "External" controls
 - Reactor power
 - Water flow

EXTERNAL CONTROLS: REACTOR POWER

- Automatic control of Rx-outlet (turbine-inlet) temperature
 - By heat generation in fuel
 - PID controls
 - Optimized for step change in target temperature
 - Set to maintain 850 °C all the time
- Limits
 - +/- 50%/s
 - ≤110% nominal
- PDC model includes
 - Temperatures: coolant, tube, matrix (C), fuel
 - Heat capacities
 - Thermal resistances
- Required reactor power will be the code output

8

EXTERNAL CONTROL: WATER FLOW

- Automatic control of compressor-inlet temperatures
 - By water pump head
 - PID controls
 - Optimized for step change in target temperature
 - Set to maintain 40 °C all the time
- Independent for two coolers/compressors
- Limits
 - +/- 10%/s
 - $\ge 0.5\%$, $\le 200\%$ nominal head

LOAD FOLLOWING BY INDIVIDUAL CONTROLS

INDIVIDUAL CONTROLS

Test if each control can meet load following goals	Time, s	Load, %
 From 100% to 0% at 10%/min rate 	0	100
Down transient only at this stage	60	90
	120	80
- Code input: grid demand	180	70
One control at a time	240	60
Corresponding code input	300	50
	360	40
 E.g., shaft speed for compressor speed control 	420	30
Output: net generator output	480	20
	540	10
- Goal: match grid demand	600	0
■ Limits	900	0

- Compressor surge (stall)
 Turbine/compressor choke
- Lost of external controllability
 - E.g., reactor power goes to 0

- Benefits of Inventory control: highest efficiency, little temperature variation
- Significant temperature increase for Compressor Speed control

CONTROL STRATEGY

CONTROL STRATEGY

- Selecting best control mechanisms
 - For load following
 - Based on previous results
- Combination of controls
 - No one single control can do it all
- Two options:
 - With active inventory control preferred
 - With passive inventory control
- New transient calculations
 - Combination of controls

LOAD FOLLOWING DEMONSTRATION

LOAD FOLLOWING

- Demonstrate Holos-Quad plant load following
- Over <u>full range of loads</u>
- From 100% to 0% and back to 100%
 "Down and Up" transient
- Both ramps: 10%/min
 - Over 10 min = 600 s
- 5 min wait time at 0% and 100%
 300 s
- Entire transient: 30 min
- Results for Control strategy A active inventory
 - Some differences for Option B

REACTOR CONTROL

- Presented analysis assumed that required power level will be achieved
 - To match heat demand from the Brayton cycle
 - And maintain Rx-outlet temperature
- From that power history, net reactivity is calculated
 - Using reactor kinetics equations
 - With delayed neutrons, decay heat, and reactivity feedbacks
 - The rest should come from control
- This external (control rod) reactivity was compared to the Holos-Quad control mechanisms (drums) capabilities
 - Found to be within design

SUMMARY

SUMMARY

- Flexible operation of Holos-Quad micro-reactor was demonstrated
 Using Plant Dynamics Code
- Brayton cycle control mechanisms identified and investigated
 - All options
- Load following
 - Grid demand changing between 100% and 0% at 10%/min rate
- Best option: inventory control
 - Limited by tank volume or reactor power
- Control strategy was developed
 - Combination of controls
 - Options for active or passive inventory control
 - Reactor and other components are characterized

QUESTIONS?

BACKUP: MORE LF RESULTS

