
Creating a Simulation Platform for Research and
Development of Advanced Control Algorithms

Advanced Sensors and Instrumentation (ASI)
Annual Program Webinar

October 30 – November 2, 2023

Jake Farber, Ph.D.
Ahmad Al Rashdan Ph.D. (PI)

2

Team members:
Craig Primer
Maria Coelho
Vaibhav Yadav
Joe Oncken

Other Idaho National
Laboratory Collaborators:
Anthony Crawford
Carlo Parisi

Acknowledgements

3

Advanced reactors will reduce construction and operating costs and increase
flexibility, but will require more advanced controls and automation techniques.

4

Unique Aspect Challenge Control Requirement

Regulatory Requirements
Artificial Intelligence/Machine Learning (AI/ML) control may
not meet regulatory requirements, such as deterministic and
explainable behavior

Include an interface control layer between the
plant and any AI/ML decision making

Operating Environment
Instrumentation and Control (I&C) equipment will endure
harsh environments for extended periods, increasing
probabilities of failures

Identify and compensate for sensor,
communication, and electronics failures

High Consequence Manual investigation to reduce uncertainty and avoid
shutdown may not be feasible

Incorporate risk elements to prevent
unnecessary loss of power generation

Highly Coupled Compact and simpler designs will produce strongly coupled
systems, making “isolated” control less feasible

Integrate highly coupled control loops and state-
awareness methods

Evolving Knowledge Novel concepts of physics and operation will be used that
may not be fully understood or validated

Incorporate robustness into the control loop
design

Operating History There will be limited operating history with which to make
operational decisions

Use software models to identify and react to or
track unanticipated physical phenomena

Define the human role and allowable human
interventions

Our previous effort identified unique aspects and challenges for controlling advanced
reactors, which resulted in the proposed set of control system requirements.

5

Operational Approach (Detailed)

Digital Twin

Sensors
Multiplexer/

Estimator

Plant

Sensor Measurements

Operational
State

Awareness

Passive
Control

Equipment

High Performance (HP) Control

Supervisory Control
(AI/ML-assisted Control)

Interface of
Supervisory &

HP Control

Condition
Monitoring

Interface of
Risk &

Performance

Real-time Plant
Performance

Optimizer

Others
Gap

Supervisory Control

Digital Twin

Risk Model

External Sensor
Measurements

Actual Internal
Sensor

Measurements

HF Model

External
Requirements

Controller
Multiplexer

LF Model
(Physics or
Empirical)

Plant Change
Compensator

Control
Optimizer

Controller
Interface of

Logical and HP
Control

Controller

 Logical Control

Interface of
Supervisory &
Logical Control

Interface of
State

Awareness &
Performance

Human
Override

HP Control
Logical Control

Human
Reference

To meet these control requirements, that effort also proposed a hierarchical control
framework that integrates advanced control, supervisory control, and digital twins.

6

Our future research plan incrementally incorporates additional capabilities until we
ultimately demonstrate highly coupled and autonomous operations.

7

• To integrate the framework, existing software tools surveyed are proprietary and
contain closed-source code, are unqualified or limited in functionality, have
limited interfacing to other tools, and/or require specialized knowledge of tools

• This effort created a simulation platform that can integrate autonomous-control-
enabling technologies and methods, allowing for faster and more efficient
development and transfer of ideas

• The software platform is called the Control and Optimization Modular Modeling
Application for Nuclear Deployment (COMMAND), and it is designed to be:
– Accessible
– Modular and interfaceable
– High performing

Motivation and Objectives

8

Popularity

Active CommunityOpen Source

Cross Platform

COMMAND was developed using the Python programming language because of its
popularity, active community, and open-source and cross-platform compatibility.

JavaScript

C

C++

Java

Python

IEEE Top Programming Languages 2023

https://spectrum.ieee.org/the-top-programming-languages-2023

9

Graphical Layout

10

from command import *
if __name__ == '__main__':
 s = base.Simulator(time_step=0.1)
 s.add([
 base.Variables('reference', 'error', 'control', 'sensor'),
 base.SineWave(name='sine1', inputs='sim_time', outputs='reference', period=60),
 base.Subtraction(name='subtraction1', inputs1='reference', inputs2='sensor', outputs='error'),
 control.PIDController(name='pid1', inputs='error', outputs='control', kp=10, ki=3, kd=0, tau=0),
 control.TransferFunction(name='tf1', inputs='control', outputs='sensor', tf_matrices=[[1], [0.5, 1]]),
 io.Historian(name='historian', path='sensor_data.csv’),
 io.Visualization(name='visualization', plot_dicts=[
 {'variables': ['reference', 'sensor']},
 {'variables': ['control']},
])
])
 s.compile()
 s.start()

To create a simulation, the basic building blocks—variables and systems—are
combined in a Python script, with connections defined by system inputs and outputs.

• Uses text input and output files
• Groups components by modules
• Connects systems through their

inputs and outputs keywords
• Allows simulation components to

be added in any order
• Enables parallel processing

11

sim_time control error reference sensor
0 0.0000 0.0000 0.0000 0.0000
0.1 0.1047 0.0105 0.0105 0.0000
0.2 0.2078 0.0205 0.0209 0.0005
0.3 0.3015 0.0292 0.0314 0.0022
0.4 0.3805 0.0362 0.0419 0.0056
0.5 0.4418 0.0413 0.0523 0.0111

Running the simulation creates both a visualization platform for viewing its
progression in real-time and a CSV output file for reporting and postprocessing.

12

We implemented a use case that integrated RELAP5-3D, logical control, an anomaly,
and anomaly detection to simulate detecting the anomaly and shutting the reactor down.

import numpy as np
from command import *

def scaled_cosine(x):
 return 0.001 * (1 - np.cos(x * 2 * np.pi / 300))

if __name__ == '__main__':

 input_variables = [{'card_number': 20509670, 'word_number': 3, 'reference_value': 0.5, 'offset': 0.5}]
 output_variables = [{'location': 0, 'variable': 'rktpow']

 s = base.Simulator(time_step=2)
 s.add([
 base.Variables('normal_drum_angle’, 'drum_angle’, 'anomaly_score’,
 'reactor_power1', 'reactor_power2', 'reactor_power'),
 base.Constant('score_threshold', value=3),
 base.Constant('fault_drum_angle', value=0.1),
 base.UserDefined(name='user1', inputs='sim_time', outputs='normal_drum_angle’, function=scaled_cosine),
 control.LogicalOperator(name='logic1', comp1='anomaly_score', op='<=', comp2='score_threshold',
 return1='normal_drum_angle', return2='fault_drum_angle', outputs='drum_angle'),
 dt.RELAP53D(name='marvel', inputs='drum_angle', outputs='reactor_power1’, relap_file_directory='RELAP/’,
 input_variables=input_variables, output_variables=output_variables),
 base.AddGaussianNoise(name='noise1', inputs='reactor_power1', outputs='reactor_power2', std=50),
 base.AddRamp(name='anomaly1', inputs='reactor_power2', outputs='reactor_power’,
 start_time=4*60, slope=200/60),
 mlo.AnomalyDetector(name='detector1', inputs=['drum_angle', 'reactor_power’], outputs='anomaly_score’,
 historical_data_file='unfaulted_data.csv', method='pca', pca_var=0.99, window_size=20),
 io.Historian(name='historian', path='faulted_data.csv', time_step=10),
 io.Visualization(name='visualization', update_time=1, n_time_steps=200, plot_dicts=[
 {'variables': ['drum_angle']},
 {'variables': ['reactor_power']},
 {'variables': ['anomaly_score']}
]),
])
 s.compile()
 s.start()

13

We implemented a use case that integrated RELAP5-3D, logical control, an anomaly,
and anomaly detection to simulate shutting the reactor down after detecting an anomaly.

14

• Filling a gap in the existing software tools,
COMMAND is a flexible and scalable
simulation software platform written in Python

• Its key benefit is its ability to integrate
autonomous-control-enabling technologies
and algorithms, allowing for faster and more
efficient development and transfer of ideas

• The current effort laid down the software
foundations and infrastructure and
demonstrated the software with the MARVEL
use case

Conclusions

asi.inl.gov/energy.gov/ne

Thank You

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15

