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OBJECTIVES

= Develop a Data-Driven Digital Twin to aid in-cycle control of existing BWR fleet;

= Optimize the efficiency of operation during the planning stage of generation
cycle:
— Reduce the tear and worn of turbine components;
— Reduce the radiation exposure of on-site personnel;
— Increase the profitability of nuclear generation.
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PROBLEM TO SOLVE: MCO PREDICTION

Un-separated liquid droplets:

Moisture Carryover (MCO).

Higher impact on turbine blades
Higher dose to on-site personnel
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PROBLEM TO SOLVE: MCO PREDICTION

Un-started cycle prediction: Evaluate MCO using the projected core status.
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TRAINING DATA
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Higher MCO at the end of each cycle;
7,000+ core variables behind each measurement
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FEATURES AND TRAINING METHODOLOGY

Engineering analysis to determine the feature:
« Steam quality(Q) and Coolant flow rate (V,)
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Physics-informed Model Selection:
+ Single-layer Neural Network with non-linear addition
* Mimic the nature of MCO (Aggregation of liquid droplets)

Hidden Output

Output

Hyper-parameter optimization:
*  Genetic Algorithm (Elite Survives)
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Avoid Overfitting:
» Leave-out one cycle, and cross-validation
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MODEL PERFORMANCE: GENERALIZATION

00% MovHrz Cycle #6, Model #35, Result, 01 Neuron
70% Train(MSE=1.65e-04), 10% Valid(MSE=1.92e-04), 20% Val2(MSE=9.24e-05), Independent Test

MCO Values

MCO Values

Cycle #1, MSE Train=4.62e-04

02

MCO Measurement

A Valid Set, MSE=1.04e-03
®  Valid-2 Set, MSE=4.08e-04

-0.05

1.46 1.48 15 1.52 1.54
Cycle Exposure (MWd/ST)

Cycle #4, MSE Train=2.48e-05

1.56
%10

02

0.15

0.1

MCO Measurement
A Valid Set, MSE=2.04e-05
®  Valid-2 Set, MSE=2.32e-05

-0.05

0.6 0.8 1 1.2
Cycle Exposure (MWd/ST)

1.4 1.6
%10

MCO Values

MCO Values

Cycle #2, MSE Train=1.19e-04

02

MCO Measurement

A Valid Set, MSE=5.36e-05
®  Valid-2 Set, MSE=5.03e-05

-0.05

4000 6000 8000 10000 12000 14000

Cycle Exposure (MWd/ST)

2000

Cycle #5, MSE Train=1.02e-04

02

0.15

0.1

0.05

MCO Measurement
A Valid Set, MSE=1.12e-04
®  Valid-2 Set, MSE=9.82e-05

-0.05

4000 6000 8000 10000 12000 14000

Cycle Exposure (MWd/ST)

7

2000

MCO Values

MCO Values

Cycle #3, MSE Train=2.44e-04

02

MCO Measurement
A Valid Set, MSE=3.39e-04
®  Valid-2 Set, MSE=9.07e-05 b b &

0.15

0.1

0.05

-0.05

6000 8000 10000 12000 14000

Cycle Exposure (MWd/ST)

2000 4000

Cycle #6, MSE Train=NaN

02

MCO Measurement

¢ Test Set, MSE=1.30e-04

-0.05

4000 6000 8000 10000 12000

Cycle Exposure (MWd/ST)

2000

Argonne &

NATIONAL LABORATORY



Cycle #7, MCO #35, MC0=0.372,

24-Dec-2018, Therm Power=3504.2,
SLIND TEST
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CONCLUSION

= BWR MCO was modeled using machine learning technique, which was never
achieved by any other trivial methods;

» Collaborating nuclear facility is using this model for performance optimization;

= This model could be included in a feedback loop, to provide the feasibility to:
— Automatic operation based on MCO prediction;
— On-line learning and updating of the machine learning model for better
accuracy.
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STEAM DRYING PROCESS

Steam drying in GE BWR/4 reactor :

(1)Steam Separator, upgrading the steam

quality from ~30% to ~90%;

(2)Steam Dryer, upgrading the steam
quality from ~90% to ~99.9%.

Saturated Steam Separators will
elevate the Moisture Carryover
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ENGINEERING FEATURE SELECTION

Before Entering the Separator:
Lower initial steam quality (Q),
Higher MCO :

INSTALLATION
1 GUIDE BRACKET
MCO~— (m > 0)
Q m ALIGNMENT PIN
HOLD DOWN BOLTS
FLOOR SUPPORT:
LEGS

SHROUD

In Steam Separator :
Mixture passes swirl vanes,
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ML STRUCTURE

Nature of MCO:
Aggregation of ||C|U|d droplets [ Create Initial Population | . Bl |
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WHY?

NEW-PHYSICS AND DATA D
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1. A machine learning model can
only interpolates the points it sees.

2. Extrapolation is unreliable.

3. In order to get accurate
interpolation, adequate sampling
density of the input space must
exist.
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