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Project Overview

Project Goal: Improve economic competitiveness of advanced reactors through

— Enhanced operational flexibility by coupling advanced reactor concepts with Thermal Energy
Storage technologies.

— Integration of control, diagnostics, and automated reasoning in a suitable architecture
ensuring semi-autonomous operation.

— Reduction of O&M costs by optimizing plant availability and maintenance schedule.
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Project Overview
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Project Overview: Why changing things in Nuclear Industry?

= Nuclear Units are struggling to stay competitive in U.S. deregulated markets (premature shutdowns
in the last years). Production Tax Credits and Negative prices are an issue.

» Renewable penetration affects grid stability and continuity of service

Identified Solution: ENHANCING FLEXIBLE OPERATION CAPABILITIES

PPS intervention Operating limits

Q. Any issues related to this operational paradigm? thresholds \ (Current conditions)

Normal Operation

» Frequent power variations might accelerate component wear Region
and tear and increase failure rate.

Operating limits p,
(Initial conditions) A

Q. What capabilities/performance are expected from the
control system?

Event triggering
PPS intervention

System response
during a power
transient

= Meet the grid demand;

» Maximize the profitability of the unit; Stat

= Meet the operational limits on temperatures, pressures

and flowrates, i.e., keep the system within Normal Qualitative representation of NOR (Adapted from
Operation Region (NOR)' Supervisory Control System for Multi-Modular Advanced

Reactors by S.M. Cetiner et al., ORNL/TM-2016/693, 2016).




Project Overview: Autonomous Operation and Nuclear Profitability

= Economics is the main driver for implementing an innovative control system architecture. With respect to
other power generation technologies, nuclear units have higher fixed O&M costs.
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Identified solution: enhancing the Monitoring and Diagnostics capabilities informing the
Decision-making process.



Project Overview: How can Al/ML algorithms be helpful?

» |dea: using Al/ML algorithms to perform repetitive, time-consuming tasks performed by
human operators.

» Goal: selecting the best way to perform power transients, taking feasible control actions
and scheduling maintenance interventions.

» [nteresting question is not “Can we operate the unit in Load-following

mode?”, but ...
“Is Load following mode “Can plant components
the most profitable way of withstand thermal stress
operating the unit?” from Load-following?”
(Keep unit within the bounds (Costs/benefits trade-off,
of Normal Operation Region) given diagnostics results)



Results and Accomplishments: Importance of teamwork in a crew

= When collaboration is correctly applied, it is one of the best ways for nuclear units to produce
power with fewer errors, events and improved performance.

= U.S. NRC organized a team of researchers to review literature in

psychology, cognition, behavioral science and apply it to human

performance in NPP operation (NUREG-2114). D e
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failure probability) and fixing the pump  brand new pump
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(Asset-management)




Results and Accomplishments: Key concepts

Algorithms applied to Normal Operation
only. The goal is to assist operators in
making the best decisions, given the
system's current capabilites and the
health of its components.

Algorithms fulfilling Control, Diagnostics
and Decision-making tasks need to “talk”
to each other.

PPS must be independent of PCS. In case
of violation of limits on safety variables,
PPS must be allowed to take over.

Operators must be given the possibility to
override the Supervisory Control system.
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Results and Accomplishments: System description

» Fluoride-cooled High-Temperature pebble-bed Reactor (gFHR design selected by Kairos Power) coupled with
Thermal Energy Storage (TES) system. The designed architecture was applied to the Intermediate circuit

operation. o
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Results and Accomplishments: “CONTROL” module

» Task: ensuring the system components do not experience operating conditions that might affect their
integrity or accelerating the wear and tear.
Identified Algorithms: Reference Governor (RG) and Feedback Regulators
Approved Short-term Adjusts set-points to local .
. . \ and Long-term Actions CO’-J;J-IfrOHEI’S tr; .perforn’rt tn:'mtyents
= Control-oriented DT derived by tracking CONTROL module activates/deactivates controllers

e ~ according to the Operating Mode
Control-oriented

main process variables
Digital Twin (DMDc)

= RG in the “Supervisory Control Layer” predetons
c . . 9 Physics-based, reduced M= - o ]
- , » pervisor ntrol Layer raditional feedbac
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Results and Accomplishments: “DIAGNOSTICS” module

» Task: A Diagnostics algorithm discriminating component and sensor failures

» Data-driven diagnostic methods reconstruct the relationship between the input/output variables
* Not physics-based (unreliable for detecting equipment/sensor anomalies, off-training conditions).

- Large datasets needed

nsing
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Identified Algorithms: PRO-AID for real-time diagnostics, Markov
models for projecting failure probabilities of single components.

Projects component
failure probabilities
using failure rate data
and failure probabilities
from the last time-step
as calculated by PRO-AID

DIAGNOSTICS module
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Results and Accomplishments: Advantages of proposed solutions

» Operator can bypass Supervisory control
layer, and supply set-points to PIDs
(“keeping the hands on the wheel”).
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* |[n an architecture of data-driven algorithms,
what happens if sensor failures are not
promptly diagnosed?
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Results and Accomplishments: PRO-AID and Markov models (1/2)

FMEA Table for Intermediate Circuit components.

Starting from PRO-AID diagnostics capabillities,

Component | Failure/Fault | Failure Rate (115) | poqociom ) the faults affecting the Intermediate Circuit
Valve 1 | Stuck 3.47E-04 10 components were identified.
2 External Leakage 1.88E-04 100
] 1 Blockage 8.20E-05 2 0 0
Pipe > Toere ool P = = Markov modelsf used to pro_J_ect smgle_ |
. 1 | Leakage 1.98E-05 100 components failure probability ahead in time.
o 2 | . 4.18E-05 20 Components could either be in perfectly
! | Fouling 23500 2 operating conditions or to have 2 or 4 failure
2 Blockage 3.39E-05 2
IHX/SG 3 Shell Side Leak 1.90E-05 100 mOdeS (faUItS)
4 Tube Side Leak 2.76E-05 100 .
1 Degradation 9.13E-05 5 P(t) = A - e "+ B.
Pump 2 External Leakage 1.98E-05 100 State 1 ’ ’ :
N
dP(t) _ . _ ) —
Markov PRO-AID o~ - L An P Pe=0)=1
model model J D = 5 Pi(n) P,(t=0)=0
r\ f\' State 2 State N .
*ran—1 n (¢
p (t ) p(t ) L (t ) %Z/MN'Pl(I) Pyit=0)=0

Posterior Prior Posterior State 3



Results and Accomplishments: PRO-AID and Markov models (2/2)

1. Initialize the Markov models for all components

» Results from coupling PRO-AID with
Markov component models are fault
probabilities at each discrete time-step AT

2. Repeat for each macro time step (n = 1):
a. Use the Markov models to compute the state probabilities at time
t = n - AT using the known state probabilities at t = (n — 1) - AT

= Results used to estimate system output b. Use PRO-AID with the data collected betweent = (n — 1) - AT

(GRA) and check safety limits (PRA) and t = n - AT to update the posteriors probabilities.
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Prior probabilities (computed by Markov models) Posterior probabilities (computed by PRO-AID)



Results and Accomplishments: “DECISION-MAKING” module (1/2)

= Objective: ensuring the continuity of service by meeting the demand at any time without violating
operational limits.

Two sets of Decisions need to be made during Unit Operation

s Y

SHORT-TERM DECISIONS LQNG-TERM_DECISIQNS
(operational procedures) (maintenance interventions)
= Transitions to different Operation = “Do-nothing”

Modes

» “Replace” faulted component

» “Fix” faulted component

Identified Algorithm: Identified Algorithm:
Demand level compared with expected power Decisions made by solving a Partially
production capabilities (outcome of the Observable Markov Decision Process

Generation Risk Assessment (GRA) analysis). (POMDP).




Results and Accomplishments: “DECISION-MAKING” module (2/2)

Key role played by the GRA analysis:

» |n addition to abrupt failures,
multiple slow performance
degradation phenomena affect
components. Multiple failures
overlap during operation.

= Automatically accounts for the
“‘compensation” that can be
provided by the other actuators
and/or components in case of
degraded performance.

= Estimates the impact that
individual component faults have
on the system power production
capabilities.
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effective Operational
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Results and Accomplishments: Development of GRA model

Hot Loop
at 0%

= Analytical approach: Fault Tree method to k=

l Fabve 1 Vahe 3 'ch Pump 1 Fm£p3 Solar Pump
calculate the probability of system trip or e st Eatee o s it st et
. . Q
derate. Rare Event Approximation could = ed® T - Vel = Rl & Tk 1 - R - Tt =
not be applied. © = © > © © ©
= Abandoned FT approach (too many @
output levels deriving from simultaneous e
failures scenarios) o 2

[ I | ] I |
IHX 1 Pipe 1 WValve 1 Vahe 3 Pipe 3 Pump 1 Pump 3
Laaks (55) Ext Laakage Ext Laakage Ext Leakaps Ext Leakays Ext Leakagra Ext Leakaps
= Solution: Probability distribution of system O e Y e oS wer] O[] O [ O[] [
¥ Leaks (TS) Ext Leakape Ext Leakape Ext Leakage Ext Leakape Leak Ext Leakape Ext Leakape

output calculated with Markov Chain Monte © O O O O O O O
Carlo (MCMC). Each fault sampled Primary and Intermediate Circuit separately addressed
according to probability distribution.

N « f; - binary variable equal to 1 with probability
System Output = 1_[(1 —R;f;)  System Output = Z 0; /N p; when a failure occurs
i=1 j

* R; — reduction of the system output

17



Results and Accomplishments: Development of PRA model

= (Generated a probabilistic model of the system Power Probability
. ! Output (%)
from which the system output (0;) is sampled o -
according to their probability distributions L 1 | [ Probability of not meeting
(MCMC) 0, = 20% P2 the demand (“FAILURE”)
Current Demand J
level (D (t)) Oy = 60% P
= At each time step, the probability that system , | Probability of meeting the
. . . demand (“SUCCESS”)
power capacity is higher than the current Oy = 100% .

demand level is calculated.
Comparison of expected power production capabilities with

|Oj € {01, 02, ) ON}: Oj > D| current demand level.

O >D)=
p( / ) N Region 1
% 10°°
Q:'— Region 2
<1 1077
= Modified PRA: new definitions of “success” and fEeiene
“failure”. System “failure” is defined as the event 1076 10-5
when the system cannot meet the demand. Pt-sys

Acceptance Guidance for system failure probability.



Results and Accomplishments: Definition of test scenario

* Not Severe failures: Performance degradation failures (e.g., fouling). Consequences can be mitigated
by dedicated control actions (“compensation”).

" Seve re failures: Consequences are SO ‘IHX Fouling’ Is Compensation Is Demand met Can operation Is Demand met
rys . . (Discharge Mode) through Actuators by switching to continue after by switching to QOutcome
severe that a transition to a different mode is sufficient? Discharging? | | “Double valve stuck’? | | Load-following
required, in case failed component can be e = Success (S1)
Isolated; otherwise, maintenance intervention . e Sucoess (52)
IS required. e L Failure (F1)
L Success (S3)
Stage # Time (s) Stage Description me Ves
‘ Success (S4)
1 0.0 System operated in Load-Following mode s \
it 2 Failure (F2
2 100.0 IHX fouling detected iniel SEE - ailure (F2)
3 Automated | Compensation through Actuators Yes Success (S9)
Yes
4 200.0 Demand increase No sl
5 200.0 Transition to Discharging mode - b Failure (F3)
249.0 N i Success (S7)
first valve
6 ( 3490 ) Double-valve stuck detected » Yes Sucoess (S3)
(second valve) i Failure (F4)
- . N " : . .
2620 rangition 10lR02gARRIOWING MEER Visualization Event Tree (ET) path for the test-case sequence.
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Results and Accomplishments: Simulation of test scenario (1/2)

SG power tracked by feedwater mass flow rate
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Results and Accomplishments: Simulation of test scenario (2/2)

ih — ]
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PRO-AID model outcomes - Time evolution of failure probabilities. GRA analysis outcome - Time evolution of the expected thermal

power capacity of the TES system.
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GRA analysis outcome - Time evolution of the expected power PRA analysis outcome - Failure probability trends corresponding to
production capabilities of the whole system. “Do nothing” and “Transition to Discharging mode” (t=200 s).



Concluding Remarks

 Future Plans

[Do-nething]

— Real-time adjustment of GRA-informed | [Switch Mode]

Component every 1 .
operational constraints failure 1hour | E[Pen] J SHORT-TERM | mode selection
m GRA [Do-nothing]
— Implementation of an additional ARaIYSlS | [Repair]
PRA sanity check based on o 2thours | ELPen] S i TN
i = LONG-TERM | algorithm

safety criteria N - SAINEchack
i AR (Modified PRA)

— Final Report for Project 20-19321  \ "ot
“Design and Prototyping of NI, S———
Advanced Control Systems for

Advanced Reactors Operating in Roberto Ponciroli SINK
the Future Electric Grid” Principal Nuclear Engineer, Eli'i'ijlm
Plant Analysis & Control & NDE Sensors .

Argonne National Laboratory
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