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Project Overview

Project Goal: Improve economic competitiveness of advanced reactors through

— Enhanced operational flexibility by coupling advanced reactor concepts with thermal energy
storage (TES) technologies.

— Integration of control, diagnostics, and automated reasoning in a suitable architecture
ensuring semi-autonomous operation.

— Reduction of O&M costs by optimizing plant availability and maintenance schedule.
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Project Overview
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Results and Accomplishments: Finalization of the SAM simulator

Modifications to the P&ID of the Intermediate Circuit

» For demonstration purposes, we will
focus on the monitoring/diagnostics
of the Intermediate Circuit.

* Redundancy elements were included

» Advantages: (1) more realistic
configurations, (2) enhanced system
availability in case of faults

 Adjusted the corresponding sensor set

» Modifications performed to both the high-fidelity simulator (SAM model)
and diagnostics algorithm (PRO-AID model)




Results and Accomplishments: "DECISION-MAKING” module design

Goal of the Integrated System (Reactor + Thermal Energy Storage): ensuring the
continuity of service by meeting the load demand at any time without violating constraints.

Two sets of decisions to be made when operating the unit

/ P

SHORT-TERM DECISIONS LONG-TERM DECISIONS
They concern the asset management They concern the asset management
(operational procedure) (maintenance interventions)
 Transitions to different Operational * “Do nothing”
Modes * “Replace” faulted component
» “Fix” faulted component
ADOPTED ALGORITHM ADOPTED ALGORITHM
Demand level compared with expected power Decisions are made by solving a Partially
production capabilities, i.e., outcome of the Observable Markov Decision Process (POMDP).

Generation Risk Assessment (GRA) analysis.




Results and Accomplishments: "DECISION-MAKING” module design

Methodology for makln_g_long-term decisions: Diagnostic Tool
Integrated Markov Decision Problem (MDP) (PRO-AID)
Analysis Approach
» Adopted the approach developed in the NEUP Project
19-17045, “Cost-Benefit Analyses through Integrated | |
Online Monitoring and Diagnostics”. Markov Markov Decision
] Component > .
Key role played by the Generation Models Process Analysis
Risk Assessment (GRA) analysis ‘
/ \ — Real-time GRA
Automatically accounts Estimate the impact that -
for the “compensation” individual component Real-time PRA |+
that can be provided faults have on the power
by the other actuators production capabilities of l

and/or components. the whole system. License-acceptable optimized

asset-management strategy




Results and Accomplishments: PRO-AID and Markov models

Development of the Markov models for single components

° Start|ng from PRO_AID diagnOStiCS Capabi"ties, Component Markov Model Mark;v state — Component Fault
the faults affecting the Intermediate Circuit b i P External Leak
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Results and Accomplishments: PRO-AID and Markov models

Coupling PRO-AID with Markov component models

* Results from coupling PRO-AID with Markov
component models are component fault
probabilities at each discrete time step AT

» Results used to estimate system output (GRA)

and check safety limits (PRA)

1. Imitialize the Markov models for all components
2. Repeat for each macro time step (n = 1):

a. Use the Markov models to compute the state probabilities at time
t = n - AT using the known state probabilities at t = (n — 1) - AT|

b. Use PRO-AID with the data collected between t = (n — 1) - AT

and t = n - AT to update the posteriors probabilities.
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Results and Accomplishments: Development of the GRA model

Problem: along with abrupt failures, the ==
performance of all the components progressively m i v s A o e —
degrade — multiple faults overlap during operation. O ke © b O e © ok © b © o O e O
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» Analytical approach attempted first. Fault Tree
method (FT) adopted to calculate the probability of @
system trip or derate. Rare Event Approximation
(REA) could not be applied. ot ey
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* Truncation to probability calculation series Primary Circuit and Intermediate Circuit separately addressed
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Results and Accomplishments: Finalization of GRA & PRA models

Solution: Probability distribution of the system output
calculated with Markov Chain Monte Carlo (MCMC).

Each fault sampled according to their probability
distribution.

N
System Output = 1_[(1 —R;f;)
i=1
* f; = binary variable equal to 1 with probability
p; when fault is present.
* R; — reduction of the system output

* PRA model evaluates the risk of not meeting
the demand (new definitions of “success” and
“failure™).

 Probability distribution of the whole system
equal to the combined probability of the
independent events

Thermal Power Capacity (MWt)

-—=- Analytical (2nd order)
——=- Markov chain Monte Carlo
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Results and Accomplishments: Definition of the test-case scenario

» Not Severe failures: performance degradation failures (e.g., fouling). Consequences mitigated by
dedicated control actions (“compensation”).

= Severe failures: consequences are so severe that = - el
a transition to a different Mode is required, in case —
the failed component can be isolated; otherwise, : s 6
prompt maintenance is required. x Fabae 1)
Suesess 59
Stage # Stage Description y e
1 System operated in “Load-Following” mode T x Falre ()
2 “IHX Fouling” detected | s 55
3 Compensation through Actuators . ¥ Sucses (59
4 Demand increase o B : e
5 Switch to “Discharging” mode . Y : “““““ “:
6 “Double valve stuck” detected \ ”:;:

[ SUIGITIE SO R ONITEN e Visualization event-tree path for the test-case




Results and Accomplishments: Literature review (failure rates & costs)

PRA module updates
|
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Timescales ruling the algorithms performing control, diagnostics

and Decision-making tasks.

; . Output
Component Failure/Fault Failure Rate (1/s) Reduction (%)

1 Stuck 3.47E-04 10
Valve

2 External Leakage 1.88E-04 100

1 Blockage 8.20E-05 2

Pipe

2 External Leakage 6.89E-08 100

1 Leakage 1.98E-05 100
Tank i

5 Degradation of _ 4.18E-05 20

Thermal Insulation

1 Fouling 3.39E-05 2

2 Blockage 3.39E-05 2
IHX/SG

3 Shell Side Leak 1.90E-05 100

4 Tube Side Leak 2.76E-05 100

1 Degradation 9.13E-05 5
Pump

2 External Leakage 1.98E-05 100

Failure rates for Intermediate Circuit components faults and

impact on system power production capabilities.

Policy Durations and Costs
Component Fl\zgg': Do nothing Repair Replace
Duration Duration Duration
Cost Cost Cost
IHX Fouling N/A 4350 60 50,000 1440 5,000,000
Valve Stuck N/A N/A 72 5,400 168 37,600

Cost and duration of the policies to address selected failures.
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Results and Accomplishments: Simulation of the test-case scenario

SG power tracked by feedwater mass flow rate
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Results and Accomplishments: Outcomes of GRA/PRA analysis
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Results and Accomplishments: “DECISION-MAKING” finalization

max
« We can claim “Success” only if the demand is met over Weaie(t)  [Wsait |

the next hour. = =

At = mission time = 3600 s L a— [] | Qet
min , ~ A
. [l R A Thot(t)
* Only a portion of stored energy can be WOt (1) X_
retrieved without violating the constraints. Y
- Definition of the “Retrievable Energy” (Q¢Y LQ_» Qo g Qs6
retr (tl) [ng%ﬁumpl L d
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(Wsalt + min(5wlq%tr (tl) WHT ,pump 1 (tl) + WHT ,pump 2 (tl)))cp,salt ( o (tl) TCOld (tl))

D (tl) < A hSG Ahturbine NisNMmech




Concluding Remarks

 Future Plans

— Finalization of the “DECISION-MAKING” module by considering the estimate of
the retrievable energy when deciding Operation Mode transitions

— (M2 milestone) “Final Report for (Project 20-19321) Design and Prototyping of
Advanced Control Systems for Advanced Reactors Operating in the Future
Electric Grid - ANL

Roberto Ponciroli LinkedIn
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Principal Nuclear Engineer, E .’irﬁ E

Plant Analysis & Control & NDE Sensors

Argonne National Laboratory
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Concluding Remarks

« FY23 Publications

» Presentation: R. Ponciroli et al., “A Path to Semi-Autonomous Operation”, Workshop on Advanced reactors
and the need for advanced control systems, Argonne National Laboratory, July 12-14 (2023).

» Conference paper: T.N. Nguyen, A.J. Dave, R. Ponciroli, “Design and Prototyping of Diagnostic Methods to
Support Autonomous Operations of Advanced Reactors”, 13" Nuclear Plant Instrumentation, Control &
Human-Machine Interface Technologies (NPIC&HMIT 2023), Knoxville (TN), July 15-20 (2023).

 FYZ24 Publications

» Journal paper: A.J. Dave et al., "Design and Simulation of a Molten Salt Thermal Energy Storage System
Coupled to a Small Modular Nuclear Reactor”, Nuclear Technology, “SAM Code Development, Validation, and

Applications” special issue, (to be submitted) (2024).

» Journal paper: R. Ponciroli et al., "Design of a Semi-Autonomous Operation architecture for the operation of
a Molten Salt Thermal Energy Storage System Coupled to a Small Modular Nuclear Reactor”, Nuclear
Engineering and Design (2024).

» Journal paper: T.N. Nguyen et al., "A Probabilistic Decision Making and Predictive Maintenance Framework
for Integrated Energy Systems®, Annals of Nuclear Energy (2024).
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