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Project Overview

« Rationale: Reduce risks from human errors during transients — operations, accidents
» Goals: Demonstration of artificial reasoning to support operator actions
« Elements: Diagnostics, Prognostics, Responses, Operator actions, Automated actions
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Project Overview

Design of Risk Informed Autonomous Operation

I |
Components Diagnostics and
Prognostics

System Decision-Making

* A Bayesian Network (BN)-based System Simulation Decision-making Agent
diagnostic model for a cooling
tower fan motor in MIT's * The following systems are simulated * Markov Decision Process (MDP) * Dynamic BN
Cogeneration Plant. : .
. . by the Modelica language: — Value iteration solved by dynamic — Used for decision making for the two-
* A physics-based prognostic model —a two-loop heating system. programming technique. loop heating system.
for a Sodium-Cooled fast reactor . _ _
(SFR)'s steam generators (SGs). —an SFR system. — Applied to: —For matIleTatlc?Ikand ;tra;nsparzn; t
_ - ) representation of knowledge and data
* BN is explainable and local- an electn(.:lty + hydrogen » the two-loop system, analytics
adjustable. cogeneration SFR system. > the SFR case, and .

data links and non-accident mathematical basis for MDP

operation simulation, Modelica- to find the optimal control scenarios. considering uncertainty profiles
based TRANSFORM library was — To deal with complex reward scheme
utilized. and to find optimal solution

Integrated Decision-making Framework
I I I
Integrated Operator Support Network
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SSC Health Status Diagnostics
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Bayesian Network (BN) for an Electric Motor

* F;nodes: low-level failures with 3 states <mild, moderate, severe>.

* E,; nodes: symptoms with 3 states <low, medium, high>.

* The 3 higher-level nodes have 2 states: Success and Failure. Node E: electric failure. Node M: mechanical failure.
* Detailed formulation of the model is in Appendix I.

Labels Sensor Features (Symptoms)

E1l Motor Over Heating

E2 Bearing Over Heating

E3 Noise

E4 Vibration

F1 Unbalanced Voltage

F2 Open Stator Winding

F3 Grounded Winding

F4 Misalignment

F5 Insufficient Grease in Bearing

Fé6 Dirt in Bearing

F7 Rotor out of balance

F8 Bent Shaft

BN Diagram Drawn Using UnBBayes.
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Fault Diagnosis using Probability Propagation
« Fault Diagnosis 1s supported by UnBBayes’s probability propagation function.

 E.g. when E; and E, are observed to be “low” while E, and E; are observed to be “high”, it is predicted that F5 is 99.33%

likely to be severe and every other fault is >90% likely to be mild as shown in the figure below.

Success

Failure

0.38%

Failure

M
E Failure 99.55
Failure 15.46 Success 0.45
Success ﬁ \
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Moderate 4.48) Severe — |
/ Severe 2.24 = / \
T I Z 7
F1 F3 F4 F6 F8
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SFR Steam Generator Prognostics
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SFR SG vs LWR SG

* Pressure differences are much higher than LWR'’s counterparts.
« Temperature also much higher than LWR’s SG.
« Upon crack/rupture, water/sodium contact can be dangerous.

PWR SFR
= Specific power (kWt/kgHM) 786 (U-235) 556 (Pu fissile)
General
Power density (MWt/m?3) 102 300
Rod outer diameter (mm) 9.5 7.9
Clad thickness (mm) 0.57 0.36
Cold planum J Fuel Rod pitch-to-diameter ratio 1.33 1.15
Hot plenum Etectri
’ ““"T} Enrichment (%) ~4.0 ~20 Pu/(Pu+U)
Average burnup (MWd/kg) 40 100
pressure (MPa) 15.5 0.1
inlet temp. (°C) 293 332
Coolant
outlet temp. (°C) 329 499
reactor Ap (MPa) 0.345 0.827
J;‘::;::L Rod surface | average (MW/m?) 0.584 11
heat flux maximum MW/m?) 1.46 1.8
Average linear heat rate (kW/m) 17.5 27.1
Primary pressure (MPa) 7.58 15.2
sodium Steam
(cold) temperature (°C) 296 455
SFR with TRADITIONAL Type SG Typical Design Specifications: PWR vs SFR
(“Sodium-cooled Fast Reactor (SFR) Technology and Safety Overview:, DOE) (“Sodium-cooled Fast Reactor (SFR) Technology and Safety Overview:, DOE)
<>
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SFR SG Degradation Mechanism

Creep
Permanent deformation under persistent mechanical stresses.
In NPP: high-temp, high-stress environment (e.g. SFR SG).
Failure mechanism: creep crack, rupture
Priority in SFR SG: very high.

Thermal Fatigue
Damage due to cyclic temperature fluctuation.
In NPP: caused by hot/cold jets mix; fluctuation of liquid
free levels

Failure mechanism: fatigue crack.
Priority in SFR SG: low.

Mechanical Fatigue
Damage due to cyclic mechanical stresses.
In NPP: caused by flow-induced vibration.

Failure mechanism: fatigue crack.
Priority in SFR SG: low.

Stress Corrosive Crack
Damage due to combination of corrosion and stress.
In NPP: corrosive substance in water.
Failure mechanism: crack.
Priority in SFR SG: very low.

The prognostic model will focus on creep
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Larson-Miller parameter (LMP)

« Estimate the time-to-failure (t;, time for a new specimen to fail) under temperature T and stress o.

M)
1000 v ' ! ]
LMP & Number of data : 1815 ]
IR S e T Vs
———/ LMP _20 -5
tf == 1 O T §
A wr 0.5Cr-0.5Mo steel (tube) ; :
T § i mueem |
2 > 1.25Cr-0.5Mo-Si steel (lube) By N
\ ) e 1.25Cr0. SMoesei.st;eJ'(NT plate) K gn
: ggssg::m :oel :NT &ale) -
®  2.25Cr-1Mo steel (QT plate)
11(3'1000 16(;00 18(1)00 20(;00 22000 24000
Larson-Miller parameter ( Tm(zo + Iogtmh)) )
« t/s uncertainties come from uncertainties of T and LMP.
>
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Creep Damage Fraction (D_)

e D.= ? in which At is the time the specimen experienced. Failure occurs when D, reaches 1.
f

 For varying temperature and pressure (and thus varying LMP), D, is defined as [ f—;.

« D, also has uncertainties since it is based on t;.. Probability for D, to exceed 1 is the failure probability.
« Distribution of D, is sampled from LMP and T using Monte Carlo simulation.

« Failure probability prediction example below: prob(D.'+D 2>1) = probability for the specimen to fail before t,.

D.2: Damage Fraction increment

between t, and ¢,. Predicted by
D.': Damage Fraction due to LMP.
loads prior to f,. Measured by \

non-destructive methods.
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Two-loop Heating System Decision
Making Support: MDP
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Example System and Test Scenario

Household water heating system with two loops
Loss of flow accident initiated by a pipe break

Competing objectives of (1) maintaining system within safety
operating limits (“trip setpoints”) and (2) continued operation

\

No
Action

—

No

Release Steam
Accumulator

)

No
Action

Shut all Inlet & Outlet
Control Valves
(206/232 & 205/231)

Reopen Inlet &
Outlet Control
Valves (205/231)

—~0

Activate
Emergency
Pump

—~0

Release Steam
Accumulator

Water Level [m]

)

High-level depiction of evaluated decision tree.
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High-level sketch of heating system. Degraded SSC is marked orange
and SSCs marked green are available for operator control.
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Markov Decision Process (MDP)

General framework for formulating sequential decision problems

Decomposed as

1. State space

2. Action space

3. Dynamic model
4. Reward model

Objective is to maximize reward

MDP Solution Approach

Compute the Expected Value (Bellman Update Equation)

V(s) = max Q(s,a) = mc?x(R(s, a) + z P(s'ls,a)V(s"))

Dynamic programming
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Application to a Failed Loop Scenario

Available Operator Options

0.0 0.00
“03 —0.05
'g o § -0.10
g £ 015 < Human effort to develop
g °° % —020 < Reward Model & Dynamics Model
Q o
=08 —0.25
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4.‘0 4.‘5 5.‘0 5.‘5 6,‘0 6.‘5 31‘1 31I2 3;[3 3i4 3i5
Water Level [m] Water Temperature [K]
Inventory backup tank release: -0.1
Emergency pump activation: -1 MDP Solution Approach
Q(s,a) =R(s,a) + ) P(s'|s,a)V(s") i
) ) ) < Computer effort to solve DP Logic
s/
Dynamic programming
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Two-loop Heating System Decision
Making Support: DBN
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Dynamic System Status & Risk Modeling
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Control actions at given time steps

System P&ID to Functional Structures Update of diagnostic results of

Hazard state probability is affected by

components component status change
* Objective modeling of system using functional modeling technique and dynamic Bayesian networkl?1 [3]
— System decomposition reflecting physical phenomena (the law of conservation of mass and energy)
— State probability calculation using dependency information among subsystems
[ ]

System state probability & risk quantification

k k k-1 — — k-1 k-1
Pr(siy2) = X _gen Zeceny Pr(sgya | seys 2, e D) xPr(c®D s ) xPr(s{s)
sys

[2] Kim, Junyung, Asad Ullah Amin Shah, and Hyun Gook Kang. "Dynamic risk assessment with Bayesian network and clustering analysis," Reliability Engineering & System Safety 201 (2020)
[3] Kim, Junyung, Hyun Gook Kang et al. "System Risk Quantification and Decision Making Support using Functional Modeling and Dynamic Bayesian Network," Reliability Engineering & System Safety (2021)
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Decision Making Support Metrics

System Failure Risk based Approach (DBN)

Reward-function based Approach (MDP)

Decision Making based on System Failure Probability

Pr(f®) = Yoto1) Det-1) Pr(f(t) |S(t=1), C(t—l))pr(c(t—l) |S(t—1))pr(s(t—1))
- g - - —

State Probability

System Failure Risk Policy

Pr(S®~D) = Tge) Bees) Pr(SED[SE2), c(k-2)pr(c-2 |S(-2)pr(s(t-2)

~
State Transition

Decision Tree and Risk Profile of Operational Policy

80%
v
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Decision Making based on State Value

V(s©) = QeSe CoPr(COISO)
Ce

H/_/
Action Value

= Z (R(t) +yv(s(t+1))) Pr(sE+D|s®, cED)pr(c®]S®)

CoSt+1 \_ J Y,

Rhd ~
State Value State Transition Policy

* We tested decision-making support metrics for different
operational objectives

— System risk for selecting mitigation options during the
accident scenarios.

— State value for choosing operating options to make
continuous operation.

We are planning to harmonize two metrics considering
both system failure risk and expected state value.
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SFR Case Study: Modelica Simulation
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Primary Side Model

Intermediate Heat Transfer System (IHTS)

expansio...
resistan... port_b - lume_toAHX
i [o oo TS s °Intermed1at.e loop |
v w T E ““ T ® between primary side
%‘: Ic;ialau... *WI_"—‘_ e~ resistance_pAHX and BOP
= - o —= -\l 2 o sor *SG model
» = d ‘ .
S L ‘) ______ :mil:;; i e (7 *Sodium pump
_ E § p.m‘a oo ° " lv: ~ S — Model for SG tube
"E ' 'fz ]S 'I@ pimx eeeeeeeeeeee u pipe_fromAHX d 1 d
HHEH: . : : X creep was develope 7
SHE L. Balance of Plant é
O ; - E convecti... = .boundary from_SG i f‘i TTTTTTTTT i‘jn:m ; f‘i . é
s3 % '_”QF%T *3.5 MPa operating 'i'J ¢ ¢ T
o V‘T
.‘; pressure . @S
) *Turbine | e 1 S
. . .8 °. !
*Core kinetics model «Condenser ® ¢
,f @ o
*Upper and lower plenums *Feedwater Heaters. S I - -
*Intermediate Heat Exchanger Feedwater Pumps ® .~ © = = .l
«Nominal Power = 300 MWth oD o ™
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SFR Case Study: Decision Making
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Motor Degradation and Prognostic Model

Sudden failure
« A complete stoppage of the motor that occurs suddenly

* Probability is assumed to obey Weibull conditional probability P(fail within [t;,t;]) =1 — exp((tn—l) — (
o The higher the massflow is, the smaller the 7 is (i.e. higher failure rate).

Gradual performance degradation
« The gradual degradation is reflected by the speed of the motor.

« Motor speed degradation proportional to massflow rate and a random factor.

© s(t) = $*(t—ts)+ Spom, S XM *T
o S:speed, s,,,- hominal speed, t.: the time when minimum speed is reached.
o §:rate of change of speed, m: massflow, r: random factor
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Decision Making

Operation Decision Making: DBN & Bellman Equation @ @
t (B . (t t t t (g .
vV (Sgy)s = {lgé, ll(V[)Ot’ m](B())P’ e](3())P’ egn)t ) = = > Intermediate Loop Energy flow State Node at time t
Reward ; BOP Mass flow State Node at time t
~— .(t H.® O O O O ® OO (1 ] >
r®+y- 2o Pr (a( )|epri Mpyi, €1y» My, €30p) Mpop) i, 1Mot) :

ES% ) BOP Energy flow State Node at time t

-
Pr( (t+1)|e(t) ® a(t)),

-
@ SG Health State Node at time t
€int ~I®BoP’ Cinv \

(t ’ l Feedwater Motor Health State Node at time t
Intermediate loop —---»\E ™ T =
Action Node at time t
(t+1), (¢ t+1) () () _(t+1 . (1D ‘ .
Pr (lgG )le](3c)>P' e(BoP)’ lg();, ei(n)t' egnt )) « [ SG health state transition : Reward Node at time t

Motor health (t+1), __(®) (t+1) .(0 ) ( (t+1))
state transition Pr( Impop, Mpop”, iMot Vv  Ssys

R Zofis) 240 Ly ot

(t+1) _ (t+1), _(b) ® .o _(©O _(t+1)
BOP state | Pr (eBoP ) Mpop” [€gops Mpops iMot int CInt 'a(t))'

transition

state transition

<4— Risk informed state value

* Physics-based approach of designing the MDP structure
* Model-based reinforcement learning with transition probability and reward function
— Includes uncertainties coming from component degradation process.
— Helps system operators understand system state changes based on physical relations of subsystems.
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State Transition Flowchart: State Values
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a=90%

tl4 . time

v(sz57) = —15

33.8%.

47.1%
— >
v(8197) = 0.0

S
—>

v(s185) = 0.0

- Otherstates

* States with highest probabilities along the
optimal scenario are plotted.

* Failed components:
— -15 states have failed SG.
— -5 states have failed motor.

* The optimal scenario is a*=% =100%, a®1=100%,
a=2=90%, a(t= 3=90%.

— Under the uncertainties from components
degradations and system state transition
discretization, the analysis shows that this path
gives maximum rewards since it balances the
components failure costs and rewards from
electricity generation.

— Earlier stages favor generating more electricity.
— Later stages favor protecting the components.
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SFR H, + Electricity Cogeneration
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SFR Cogeneration

realExp«essnon? Bz

steamTygbine
>
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g oundary
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Superheater PressureControlVal* ®
toOth
B3leam0|spa!phVahe > _C15P X
T

generator

toCongdensor

duration=10 s

| /]

dur. ——

SFR H2 Generation BoP Loop
B1: steam inlet; B2: electricity generation; B3: H, production

* Cogeneration:
— Steam used for either electricity generation (B2) or H, production (B3).

— Steam allocation controlled by valves.

e Control optimization logic:
— Maximize monetary rewards by adjusting the electricity generation and

hydrogen production.

— Generating more electricity when electricity price is high and vice versa.

Advanced Sensors
and Instrumentation

¢ IASI

® Electricity rewards

100
@® Hydrogen rewards

= \
’ \
¢ \
75 Pt S
¢ - ---—--@——- O ———Q - ———0—— -0
//’ ‘e
) -~ __ _ o-——--o”
D Bl
© 50
s
()]
o
25
0
0:00 4:00 8:00 12:00 16:00 20:00
Time

Electricity and Hydrogen Price in a Day

* Dispatch valve candidate actions
— 100% electricity, 0% hydrogen
— 90% electricity, 10% hydrogen
— 85% electricity, 15% hydrogen

* Valve may fail upon movement.
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DBN & Beliman’s Equation

Operation Decision Making: DBN & Bellman Equation

t t t t t t t
o (55 = i e mih el i o) =

Reward

® . (GINQ] (D ®Y. (0 ® B2 valve state
r'Y +y Za(t)eAPr(a |s ) Pr(lvalvlla ) Pr(1valv2|a )—> cransition

lyalvi lvalvz

. (t+1) _(t+1)..(D (t)) > B1 state
ng;ﬂ Ze%f” ng;n Ze.%tz“) Zm%;” Zeg;” Pr(mg;™, e I ey transition

(t+1) _(t+1) (O (O . © (O (© , B2state
-Pr (mBZ ,eg, ~|Mpy, ep1, Mpy, €p7,ig,101 transition

t+1) (t+1), () O (O (1) (t t+1) tat
.Pr(ml(gs ),e](33 )|m](3%,e](3%,m](3%,e](3%,lsglvz) V(S( - state

value

B3 state transition

* Physics-based approach of designing the MDP structure

* Model-based reinforcement learning with transition probability and reward function
— Includes uncertainties coming from component degradation process.
— Helps system operators understand system state changes based on physical relations of subsystems.
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| Sv=5465
—1 0:00, $.=59 e = 85%
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— hydrogen reward > electricity reward before 15:00. :
.. L . gg.e%l *99.6% 100% o.4%¢ 0.4%
— hydrogen reward < electricity reward within 15:00 — 18:00. Monetary benefits Ermmm B e
worth the costs of moving the valves and risks of valve failures. —T 9:00, $,=59 e =100% e = 90% e = 85%
Hy = 0% H, = 10% H, = 15%
— At 18:00 and 21:00, although electricity price is low again, risk of switching the l 1
. . . 99.6% o % 9 9
valves does not worth the benefits of hydrogen rewards, which means staying at ErEsTE ﬂ _"_& ko
100/0 is the optimal action. T 12:00, $.=69 e =100% e =90% e =85%
H, = 0% H, =10% H, = 15%
l ]
99.6% o v 90.6% V100% 0.4% ¥ 0.4%
) Swv=2430 | Sv=2397  Siev=2381
— 15:00, $.=88 e =100% e =90% e =85%
H, = 0% H, = 10% H, = 15%
| ]
— ¥ 99.6% ¥ 99.6% 0.4%%4%
Sv=1550 | Sipv=1535  Sgv=1528
— 18:00, $,=91 e =100% e =90% e=85%
H, = 0% H, = 10% H, = 15%
| |
— v 99.6% v 996%  04%y04%
i oy | Swv=6s0 | suv=6ts  Sav=6e9
—+ 21:00, $.=64 T=HO0R e =90% e =85%
H, = 0% H, =10% H, =15%
v
. $H2=70 —» 100% electricity, 0% H,

—» 90% electricity, 10% H,

* Move valve costs = -1 —» 85% electricity, 15% H,

State Transition Flowchart and V Values
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Suggestions for the future

« Database is an area worth of investing and investigating, especially for advanced reactors.
o Operation processing parameters.
o Diagnostic benchmarks.

 Benchmark case development.
» Establish connections with potential users.
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Appendix I: Milestone Schedule

Date Topics

Symptom-Based Conditional Failure Probability Estimation for Selected Structures,

07/30/20 Systems, and Components
Development of Candidate Reasoning Methods and Associated Decision-Making
07/30/21 :
Metrics
06/30/22 Selection of SSC Degradation Scenarios and Case Studies for Demonstration of
Operator Decision-support
Risk Analysis of PLC/FPGA System and V & V Results of PLC/FPGA System Software
07/30/22 :
and Design
12/29/22 Final Report for Design of Risk Informed of Autonomous Operations for Advanced

Reactors
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Appendix lI: Construct the Structure BN for the Electric Motors
* Nodes and causalities were picked from troubleshooting chart in the motors’ manual.

* Expert knowledge helped to refine the selection.

Symptom

Possible Causes

Possible Solutions

Motor will not start

Usually caused by line trouble, such
as, single phasing at the starter.

Check source of power. Check overloads, fuses, controls, etc.

Excessive humming

High Voltage.

Check input line connections.

Eccentric air gap.

Have motor serviced at local Baldor service center.

Motor Over Heating

Overload. Compare actual amps
(measured) with nameplate rating.

Locate and remove source of excessive friction in motor or load.
Reduce load or replace with motor of greater capacity.

Single Phasing.

Check current at all phases (should be approximately equal) to isolate and correct the
problem.

Improper ventilation.

Check external cooling fan to be sure air is moving properly across cooling fins. Excessive
dirt build-up on motor. Clean motor.

Unbalanced voltage. Check voltage at all phases (should be approximately equal) to isolate and correct the
problem.
Rotor rubbing on stator. Check air gap clearance and bearings.

Tighten Thru Bolts.

Over voltage or under voltage.

Check input voltage at each phase to motor.

Open stator winding.

Check stator resistance at all three phases for balance.

Grounded winding.

Perform dielectric test and repair as required.

Improper connections. Inspect all electrical connections for proper termination, clearance, mechanical strength and
electrical continuity. Refer to motor lead connection diagram.
Bearing Over Heating Misalignment. Check and align motor and driven equipment.
Excessive belt tension. Reduce belt tension to proper point for load.
Excessive end thrust. Reduce the end thrust from driven machine.

Excessive grease in bearing.

Remove grease until cavity is approximately 3/4 filled.

Insufficient grease in bearing.

Add grease until cavity is approximately 3/4 filled.

Dirt in bearing.

Clean bearing cavity and bearing.
Repack with correct grease until cavity is approximately 3/4 filled.

Vibration

Misalignment.

Check and align motor and driven equipment.

Rubbing between rotating parts and
stationary parts.

Isolate and eliminate cause of rubbing.

Rotor out of balance.

Have rotor balance checked are repaired at your Baldor Service Center.

Resonance.

Tune system or contact your Baldor Service Center for assistance.

Noise

Foreign material in air gap or
ventilation openings.

Remove rotor and foreign material. Reinstall rotor.
Check insulation integrity. Clean ventilation openings.

Growling or whining

Bad bearing.

Replace bearing. Clean all grease from cavity and new bearing.
Repack with correct grease until cavity is approximately 3/4 filled.
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Appendix lI: Construct the Structure BN for the Electric Motors

Prior Probabilities of Low-Level Failures of the CUP’s Electric Motors

* Prior probabilities of the low-level failures (F;) are given by the experts qualitatively: F4 = F5>F1 =
F7 > everything else. Exact values are assigned to the low-level failure nodes based upon this rank as
shown below.

Prior Probability Values for F4 and F5 Prior Probability Values for F1 and F7 Prior Probability Values for F2, F3, F6 and F8
Mild 0.75 Mild 0.8 Mild 0.85
Moderate 0.15 Moderate 0.12 Moderate 0.10
Severe 0.10 Severe 0.08 Severe 0.05
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Appendix lI: Construct the Structure BN for the Electric Motors
CPT P(E;|F;) of the sensor nodes

The field experts provided P(Fj|E;) qualitatively as shown in the chart below.

P(E;|F;) is determined using the qualitative P(F;|E;) and UnBBayes’s evidence propagation function. In order to reflect the qualitative
P(F;|E;), all the P(E;|F;) must be defined such that the posterior probabilities of F; satisfy the P(F;j|E;) from the expert when
corresponding E, values are observed to be abnormal. For example, the CPT of node E; must be set up such that, when E; is observed to

be moderate or severe, the posterior probabilities of F; through F; must be ranked as P(F; | E))>P(F, | E;)>P(F, |E;) as shown in the figure
below.

Observed Abnormal Likelihood of Related

Sensor(E)) Faults Rank(P (Fj|E;)) -
El F3>F1>F2 - wid s ]
i Noderate Moderate
blodeiay Severe 1 eve
Severe 2 ) 7 / \
E2 F4>F5>F6 F4 F6
F8
Mild 7 Mild B Il
Moderat 15 Moderate xl::er r I
E3 F4 > F5>F7 >F6> F8 Seve \ / % Severe
E4 F4 > F7>F6 > F8 v . \« v
E2 £3 E4
Low 2 Low 32,614 | Eow 42.1
Medium 28.62% Medium 35,48 Medium 32,594
|High 21.12 |High 31.91: [High 25.2
Posterior Probabilities Given E;.
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Appendix lli: Integrated Artificial Reasoning Algorithm: Explainable Al (XAl)

Performance vs. Explainability tradeoff [1] We aim at Integrated Artificial Reasoning Algorithm

— Objective Techniques
models

Deep
learning Ensermble
methods

e aoGs ¥ :f,:s Internal Structure ¢ Mathematical and graphical * Multilevel Flow Modeling (MFM)

ks sms: 4 Modeling modeling  Dynamic Bayesian Network (DBN)

System State * State-Space discretization * Data-driven hyperplanes from Support

Discretization based on syster_n information Vector Machine (SVM)
and data analytics

£ -~ , Causal / . . . o f
& Consequence Graphical visualization o * Decision Tree
§ Reasoning state transition trajectory
Explainability
* Performance-Explainability tradeoff * Making decisions based on quantitative evaluation of operational options
relationship among existing ML techniques. * Capturing merits of systematic approaches combined with techniques

— Often, the highest performing methods are the
least explainable, and vice versa.

[1] Figure adopted and modified from Figure 1. in Gunning, David, et al. "XAl—Explainable artificial intelligence." Science Robotics 4.37 (2019).
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Appendix IV: State-Space Discretization for Physical Inference and
Manageable Computational Cost

Equal Width Discretization Physics-informed Machine Learning-aided State-Space Discretization

Xy

Data-driven hyperplane

/ Physics-informed hyperplane

Xy

Xz

* Uncertainty Increases due to the lumped states

o Step 1: Step 2: Step 3:
L e At A Physics-based Machine Learning-based Component Status-based
partitioning clustering partitioning 4l

* Each state cell is tagged with physical meaning by Step 1 and 3.

— System space is partitioned based on physical property and
component status information.

* State size is controlled by Step 2.

Xz

*  High computation cost for state transition matrix — It minimizes the loss of state information due to lumped states.

* Different component status in system is coated with different colours.
[4] Junyung Kim, Hyun Gook Kang, et al. “Physics-informed machine learning aided system space discretization.” Proceedings of 12th NPIC&HMIT, 2021.
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Original TRANSFORM SG
L b_ i L a_s
cITm
port_a_tube %I—_D port_b_tube
T &

port_a_shell

port_a_tube port_b_tube

mmmmmmm

Advanced Sensors
and Instrumentation

¢ IASI

New model has a segment of tubes
which undergo creep, and a segment
which remain unchanged

Implementation of the new model into
the plant model showed that changes
to system pressure and temperature
due to creep were very small

Reality only expects a few percent
change in tube diameter due to creep,
while changes of approx. 15% were
required before any change in
behavior was apparent

Implication: detailed modeling of
creep isn’t necessary in generation of
state transition matrices for MDP

['C]

Tube Diameter,
Degree of Creep

SG Tube dp [Pa]

0.023792, 0% 520
0.024030, 1% 520
0.024268, 2% 520
0.024506, 3% 520
0.024744, 4% 520
0.024982, 5% 520
0.026171, 10% 520
0.027361, 15% 500
0.028550, 20% 510
0.030930, 30% 500

300

280

260

2404

® 139.104 °C
® 236.172 °C
® 139.028 °C
® 236.109 °C

Steady-state values —

20"

@
S
1
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——— Tubes Inlet Temperature, 0% Creep
——— Tubes Outlet Temperature, 0% Creep
——— Tubes Inlet Temperature, 30% Creep
——— Tubes Outlet Temperature, 30% Creep
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