

INNOVATING NUCLEAR TECHNOLOGY

ANALYSIS AND MEASUREMENT SERVICES CORPORATION

Development of Cable Insulation Materials for Advanced Reactors

Presented by: **Patrick Ward** Engineer – Materials and Cable Testing Services

Presented to: ASI Program Annual Review Webinar 11/07/2024

Purpose of the research: Develop guidance needed for advanced reactor developers to identify and select cable materials suitable for their operating environments.

Derating Cables Under Vacuum

SLIDE 3 OF 12

Findings of Cable Derating R&D

250°C,

Atmospheric

250°C, Vacuum

SLIDE 4 OF 12

Cables in Simulated Environments of Different Advanced Reactors

Material ID	Manufacturer	Insulation	Thickness (mils)	Activation Energy (kJ/mol)	Accelerated Aging Duration at 190°C and 225°C (days)
1	А	PEEK	15		
2	А	PEEK	13	116	
3	В	PEEK	7		70
4	С	Polyimide	<5	190	
5	D	Kapton	<5	100	
6	Е	Polycarbonate Alloy	5	N/A	98
7	A	ETFE	14	92	140

190°C - Simulated 60-years in service.

225°C - Simulated 20-years in service.

Thermal Shock Testing

- PEEK exhibited the best performance.
 - Minimal changes in material/electrical properties during accelerated aging and DBE simulation.
- Polyimide/Kapton were minimally affected by thermal aging; however, further evaluation would be necessary due to its hydroscopic nature and DBE performance.
- The ETFE and PC alloy polymers could not withstand the simulated environments.

ETFE after 3,362 Aging Hours and DBE

PEEK after 10 thermal shock cycles

Environmental testing of composites and ceramics:

- Testing at temperatures \geq 400°C.
 - Materials characterization and property measurements.
 - DBE testing (steam, high pressure, elevated temperature exposure, etc.).
 - Gamma or neutron irradiation ≥ 300 MRads total dose, testing at multiple dose levels.
 - Will test samples exposed to thermal only, sequential thermal-radiation, and radiation only.
- Testing of polymers is being performed following similar testing strategy at 250°C.

Material ID	Manufacturer	Insulation Type
1	F	Mica
2	F	Mica/Glass Composite
3	F	Mica
4	F	Silicone Rubber
5	G	Magnesium Oxide (MgO)
6	А	PEEK
7	E	Mica

Ceramic and Composite insulations at ≥ 400°C

Polymers at 250°C

Material Characterization and Property Testing

Testing performed on various sample types.

- Sample Type 1: insulation tubes
- Sample Type 2: wired insulation samples
- Sample Type 3: short (≤ 4-foot) cables in their normal configuration
- Sample Type 4: long (≥ 4-foot) cables in their normal configuration

Insulation Polymer	Number of Samples	Testing
Silicone Rubber	20 Samples of Type 2	 Tensile testing TGA DTA FTIR Density SEM-EDS Electrical Permittivity Mass Spectroscopy
	9 Samples of Type 4	 DBE simulations and electrical withstand following IEEE 383 Frequency Domain Reflectometry (FDR) Dielectric Spectroscopy (DS) Polarization-Depolarization (PDC)

Test Chamber

Testing performed following Standards used by the Nuclear Industry for Environmental Qualification

Samples

A Post-DBE Withstand Testing

Material ID	Insulation Thickness (mils)	Maximum Test Voltage (VAC)	
1	35	3000	
2	43	3500	
3	60	3500	
4	83	5000*	
5	15	1200	
6	13	1200	
7	20	1600	

*Test equipment maximum voltage

INNOVATING NUCLEAR TECHNOLOGY

ANALYSIS AND MEASUREMENT SERVICES CORPORATION

Thank You

Questions?

