

Advanced Sensors and Instrumentation

Development of Microwave Resonant Cavity Transducer for Flow Sensing in Advanced Reactor High Temperature Fluids

Advanced Sensors and Instrumentation (ASI) Annual Program Webinar October 24 – 27, 2022

Alexander Heifetz, PhD, Principal Engineer

Argonne National Laboratory, Nuclear Science and Engineering Division

Project Overview

Develop multimodal immersion sensor of high temperature fluid

- Hollow metallic cylindrical microwave resonator with thin flexible membrane
 - Resilient to high temperature and radiation
 - Communication with sensor through hollow rigid metallic microwave waveguide
- Transduction through microscopic volume change that shifts resonant microwave frequency
 - Membrane deflection through dynamic fluid pressure flow
 - Membrane deflection through static fluid pressure level
 - Thermal expansion of cylinder temperature

Applicable to sensing coolant fluid in sodium fast reactor (SFR) and molten salt cooled reactor (MSR)

Project Overview

• Project Schedule

Sensor prototype design

Y1

Flow sensing in water

Y3

Flow sensing in high temperature fluid

Current Status

Project Overview

• Participants

Sasan Bakhtiari Eugene Koehl

Tianyang Fang Jafar Saniie O Kairos Power

Anthonie Cilliers

Miltos Alamaniotis

Gabrielle Carrel

David Aronson

Dmitry Shribak Victoria Ankel

Technology Impact

	Ultrasonic	Electromagnetic	Anemometry	Microwave Resonant Cavity-Based
Sensing in which fluid	<u>Liquid sodium &</u> <u>molten salt</u> Based on detection of time of flight or Doppler frequency shift	Liquid sodium Take advantage of electrical conductivity of liquid sodium	Liquid sodium & molten salt Based on convective heat transfer by moving fluid	Liquid sodium & molten salt Transduction is based on fluid-structure interaction
Immersion or external	<u>External</u> Two transducers in pitch-and-catch or transmission mode require direct line of sight	Immersion or external Measure rate of conducting flux passing through coil cross-section	Immersion Involves measuring reference source cooling rate due to convective heat transfer	Immersion Can be made as small as type-K thermocouple
Deployment challenges	Crystal can degrade due to exposure to high temperature and radiation	Permanent magnet could be de- magnetized. Coil requires large size DC power supply	Relatively slow because of heat transfer	Hollow stainless steel structure resilient to high temperature and radiation

Developed analytic sensor model

- Chose right circular cylinder design (L=2a) to achieve highest Q-factor
- Focused on low order TE₀₁₁ mode

$$\Delta f_{nml}^{TE} = \frac{c}{2\pi L \sqrt{\mu_r \varepsilon_r}} \sqrt{\left(2X'_{nm}\right)^2 + \left(l\pi\right)^2} \left(\frac{\Delta L}{L} \frac{\left(l\pi\right)^2}{\left(2X'_{nm}\right)^2 + \left(l\pi\right)^2}\right)$$
$$\Delta L = \frac{3\left(1 - \nu^2\right)}{32E} \frac{a^4}{h^3} \rho v^2$$

n,m,l = mode numbers

c =speed of light

- $X'_{nm} = n^{th}$ root of the derivative of the mth order Bessel function
- L = length
- a = radius

h = membrane thickness

 ε_r = relative dielectric permittivity

 μ_r = relative magnetic permeability

- E = Young's modulus
- v = Poisson ratio
- ρ = fluid density
- v = fluid velocity

Conducted preliminary investigation of sensor drift due to membrane creep at high temperature

Model implemented in COMSOL Structural Mechanics Module

Designed K-band (18-26.5GHZ) microwave cavity

- Cavity excited through subwavelength hole
- Signal readout with a microwave circulator
- Dimensions matched to commercial WR-42 microwave waveguide 22.2mm flange
- Membrane thickness 8mil = 203µm
- Fabricated Brass cavity prototype for initial testing in water

Developed water flow loop for proof-of-principle tests

- Pump rated up to 60gpm flow rare at ambient pressure
- Omega flowmeter installed for reference flow measurements

Obtained initial results of water flow measurement

- Measure frequency shift of TE₀₁₁ mode vs. reference volume flow rate
 - Calculated $f_0 = 17.80GHz$
 - Measured $f_0 = 17.78GHz$
- Sensitivity to flow ≈ 100KHz/GPM

Identified existing experimental setup for liquid sodium flow sensing test

- Impinging jet flow
- Insulated cylindrical tank 19.5in x 9.5in with ½in center feed line
- Reference ultrasonic flow meter installed on EM pump

Redesigned insertion probe for flow sensing in water tank

- 20in-long K-bad microwave waveguide
- Enclosed in SS316 protective tube

Original K-band rectangular flange

10

15

20

Modified circular-chamfered flange with protective SS316 tube 0.875in diameter and 0.065in wall thickness

Developed vessel integrated into loop for flow sensing in impinging jet geometry2-8 slides that describe the following:

Water vessel with the same geometrical parameters as liquid sodium vessel (20in x 10in cylinder with ½ in center feed line

Waveguide insertion probe with cylindrical sensor

Preliminary results of flow sensing in water vessel

- Measured frequency shift of TE₀₁₁ mode vs. reference volume water flow rate
 - Calculated $f_0 = 17.80GHz$
 - Measured $f_0 = 17.78GHz$
- Sensitivity to flow ≈ 100KHz/GPM
 - Need to adjust for increasing temperature in fluid

Frequency response of TE₀₁₁ mode

Designed probe assembly for liquid sodium flow test

- Stainless steel 316 welded structures
- Silver-plated interior surfaces to achieve high Q of resonator

Concluding Remarks

- Publications
 - A. Heifetz, V. Ankel, D. Shribak, S. Bakhtiari, A. Cilliers, "Microwave Resonant Cavity-Based Flow Sensor for Advanced Reactor High Temperature Fluids, *Proceedings 12th Nuclear Plant Instrumentation, Control and Human-Machine Interface Technologies (NPIC&HMIT 2021)*, 232–238 (2021).
 - A. Heifetz, S. Bakhtiari, E.R. Koehl, T. Fang, J. Saniie, A. Cilliers, "Microwave Resonant Cavity Transducer for Fluid Flow Sensing," *Bulletin of the American Physical Society* (2022).
 - T. Fang, J. Saniie, S. Bakhtiari, A. Heifetz, "Frequency Shift Baseline Removal for Improved Measurement using Microwave Cavity Resonator," Proceedings of 2022 International Conference on Electro-Information Technology (EIT), 436-439.
- Patents
 - A. Heifetz and S. Bakhtiari, "Microwave Resonant Cavity Transducer for High Temperature Fluid Flow Sensing," IN-20-146, Argonne National Laboratory (2020).

Concluding Remarks

Summary of presentation/accomplishments in FY21 and FY22

- Developed microwave K-band sensor prototype
- Demonstrated initial performance in proof-of-principle test in water
- Completed design of sensor for high temperature test

Future work in FY23

- Fabricate sensor prototype for high temperature fluid environment
- Demonstrate flow sensing in liquid sodium

Alexander Heifetz

Argonne National Laboratory <u>aheifetz@anl.gov</u> (630)252-4429 <u>https://www.anl.gov/profile/alexander-heifetz</u> <u>https://scholar.google.com/citations?user=j3T68MEAAAAJ&hl=en</u> <u>https://www.researchgate.net/profile/Alexander-Heifetz-2</u> <u>https://www.linkedin.com/in/alexander-heifetz-a0932b47/</u>

Thank You