

Advanced Sensors and Instrumentation

Development of a Radiation-Tolerant Front-End Digitizer

Advanced Sensors and Instrumentation (ASI) Annual Program Webinar October 24 – 27, 2022

PI: Callie Goetz, Ph.D. Oak Ridge National Laboratory

FrEnD Team

Callie Goetz, Ph.D.

Dan Sweeney, Ph.D.

Kyle Reed, Ph.D.

Dianne Ezell, Ph.D.

What is FrEnD?

- Goal: Read out entire I&C suite at a single experimental location over one fiber optic cable (or cable bundle)
 - Thermocouples, SPNDs, SPGDs, RTDs, fission chamber (stretch goal)
- FY22: Benchtop prototype design, fabrication, testing
- FY23: Irradiation/field testing of prototype, revisions, radiation hardened prototype

What is FrEnD?

- Goal: Read out entire I&C suite at a single experimental location over one fiber optic cable (or cable bundle)
 - Thermocouples, SPNDs, SPGDs, RTDs, fission chamber (stretch goal)
- FY22: Benchtop prototype design, fabrication, testing
- FY23: Irradiation/field testing of prototype, revisions, , radiation hardened prototype

Pulse Width Modulation for Radiation Resistance

- Pulse Width Modulation (PWM) temporally encodes sensor amplitude into a continuous time digital signal
- Convert electrical signal to optical transmit via LED over rad-resistant fiber optic cable
- Encoding in time confers resistance to radiation-induced fiber darkening
- Multiplex multiple signals over one fiber
 Exception: fission chamber in pulse mode
- Data rate resolution directly related to clock speed of carrier signal: clock/duty cycle

Front End Block Diagram

6

Analog Front End – Time Division Multiplexer

- Talks to instrumentation and time division multiplex (TDM) signals
- For inside radiation zone (ionizing radiation)
 - JFET semiconductors
 - Minimize number of components
- Sensor Sampling Time: 250 Hz
- Input: 4 sensors
- Output: Time-division multiplexed signal

Analog Front End – Time Division Multiplexer

Input/Output of TDM:

Analog Front End - PWM Encoder

- Inside radiation field -JFETs, minimum number of components
- Astable multivibrator (sample clock), sawtooth generator (carrier signal), comparator (TDM input to carrier), LED (optical output)
- Duty cycle directly related to voltage from input sensor

Analog Front End - PWM Encoder

Fiber Optic Communication Development Platform

- Test transmit and receive circuitry, acquisition on one board
- Printed circuit board (PCB) integrates optical fiber Tx/Rx with data acquisition
 - 3 acquisition modes to identify most appropriate method
 - Optical fiber Tx/Rx circuitry to logic level
 - Benchtop form factor easy testing
 - Optical fiber output using microcontroller (MCU) PWM peripheral

Benchtop Characterization – AFE/TDM

- Provide 3 inputs from function generators mimic 3 pieces of I&C
- Monitor output of TDM on AFE board
- Good agreement with simulation
- Simulation shows "spurs" artifacts, due to model lack JFET capacitance

Simulated:

Experimental:

Benchtop Characterization – Binary Decoder

- 2 to 4 decoder in AFE
 - Part of AFE gives signal selection for analog multiplexer
 - Counts time enables collection on each channel in turn
- Composed of AND gates

Experiment

Benchtop Characterization – Linearity of Channels

- Examine Relationship between duty cycle and input voltage for each channel
- Vary input voltage from -900 mV to +500 mV on each channel
 - 20%-80% of full duty cycle available
- 2nd order polynomial fit (not linear)
 Under investigation
- Similar behavior across channels

Full System Benchtop Test – 3 Thermistors

Next Steps – FY23

- Irradiation Planning neutron, gamma, neutron/gamma
 - Plan to start irradiations around start of calendar year (pending funding)
 - Instrumented irradiation of system components (logic) and full system
- Board/Acquisition Revisions
 - More compressed board for irradiation
 - Increase number of input channels from 4 to 8
 - Added synchronization
 - Reduce channel cross talk
 - Updated component values
 - "real time" data acquisition and analysis
 - sensor signal conditioning needed for some detector types

Conclusions

- Prototype fabricated, characterized
- Full system benchtop testing with 3 thermistors
- AFE is designed using only JFETs, backend more flexible in component choice
- Algorithm implemented on microcontroller on receiver circuit for acquisition
- Irradiation analysis and planning underway
- Invention disclosure selected for provisional patent
- Interest from Cubresa for patent optioning
- 5 FrEnDs made to date!

Thank You

• **Problem #1:** Reactors are noisy environments

- I&C signals are small (nA uA range)
- cables are sensitive to EMI (noise on top of already small signal)

Solution: Early signal Preamplification and digitization

- Amplify signal as close as possible to measurement
- Amplified signal is immediately digitized (within a few meters)
- Signal transmitted via optical fiber (EMI/EMF blind)
- Problem #2: Extreme reactor environment necessitates long cables resulting in signal loss
 - Solution: close to experiment site, optical transmission
- **Problem #3:** Reactors are high radiation environments
 - Solution: Radiation resistance by design
- Problem #4: Traditional methods require many penetrations into reactor containment
 - Solution: MUX over single fiber optic cable or fiber optic cable bundle

- Problem #1: Reactors are noisy environments
 - Solution: early preamplification and digitization
- Problem #2: Extreme reactor environment necessitates long cables resulting in signal loss
 - Long cables are lossy, small signals can be lost to noise, traditional cabling hard to drive (capacitance)
- **Solution**: Place FREND as close as possible to experiment site to preserve signal strength and transmit over optical fiber
 - Optical fiber virtually lossless
 - No introduced EMI over optical
- Problem #3: Reactors are high radiation environments
 - Solution: Radiation resistance by design
- Problem #4: Traditional methods require many penetrations into reactor containment
 - Solution: MUX over single fiber optic cable or fiber optic cable bundle

- Problem #1: Reactors are noisy environments
 - Solution: early preamplification and digitization
- Problem #2: Extreme reactor environment necessitates long cables resulting in signal loss
 - Solution: close to experiment site, optical transmission

Problem #3: Reactors are high radiation environments

- Electronics prone to failure
- Optical fiber darkens
- Solution: Radiation resistance by design
 - Limit number of components
 - Use rad-resistant components where needed (JFET)
 - Transmit signals encoded in time (Pulse Width Modulation) over fiber (limits issues due to darkening)
 - Problem #4: Traditional methods require many penetrations into reactor containment
 - Solution: MUX over single fiber optic cable or fiber optic cable bundle

- Problem #1: Reactors are noisy environments
 - Solution: early preamplification and digitization
- Problem #2: Extreme reactor environment necessitates long cables resulting in signal loss
 - Solution: close to experiment site, optical transmission
- Problem #3: Reactors are high radiation environments
 - Solution: Radiation resistance by design

Problem #4: Traditional methods require many penetrations into reactor containment

- Each instrument requires its own cable
- Solution: Multiplexed signals over fiber optic cable
 - Only need 1 fiber optic cable or fiber optic cable bundle to extract full suite of instrumentation at one experimental location