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INTEGRATED ELECTRONICS MODEL
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There’s Plenty of Room

MEMS MODEL

Feynman, Richard P. (1960) There's Plenty

of Room at the Bottom. Engineering and
Science, 23 (5). pp. 22-36.
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COMPARATIVE STATE OF NUCLEAR FUEL FAB ON THE
INTEGRATED ELECTRONICS / MEMS TIMELINE
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STATE OF THE ART 3-D PRIN

Source: ORNL Transformational Challenge Reactor Program
* Monolithic SiC powder, 3-D printed layer-by-layer,
* With TRISO particles inclusions

* Consolidated by skin-deep SiC CVI MISSING FOR SEMINAL TRANSITION:
* Conformal geometry and topology only achievable by 3-D e STILL ‘PICK AND PLACE APPROACH’
Printing « POWDER BED DISRUPTION

* MATERIAL AGNOSTIC PROCESS
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POLYTECHNIQUE
MONTREAL

Additive Manufacturing vs 3-D Printing

3-D Printing: Flat Layer-by-flat layer
* Opens vast new geometries and

topologies
* Intimately tied to few materials
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Additive Manufacturing vs 3-D Printing

Functionality demands more:
* Multiple materials

AUTELIATION (KX
CONSTRUGTICN

ELSEVIER Automation in Construction 5 (1997) 427437

Exploratory investigation of solid freeform construction '

Joseph Pegna *

Department of Mechanical Engineering, Aeronautical Engineering and Mechanics, Rensselaer Polytechnic Institute, Troy, New York
12180-3590, USA

Abstract

A radical departure from generally accepted concepts in construction robotics is proposed in this paper. A new process
derived from the emerging field of additive processes is investigated for its potential i in
construction automation. In essence, complex assemblies of large construction components are substituted with a large
number of elemental component assemblies. The massive complexity of information processing required in construction is
replaced with 2 large number of simple elemental operations which lend themselves easily to computer control. This
exploratory work is illustrated with sample masonry structures that cannot be obtained by casting. They are manufactured by
an incremental deposition of sand and Portland cement akin to Navajo sand painting. A thin layer of sand is deposited,
followed by the deposition of a pattemed layer of cement. Steam is then applied to the layer to obtain rapid curing. A
characterization of the resulting material properties shows rather novel anisotropic properties for mortar. Finally, the
potential of this approzch for solid freeform fabrication of large structures is assessed. © 1997 Elsevier Science B.V. All
rights reserved.

Keywords: Construction sutomation; Additive manufacturing processes; Solid freeform fabrication; Rapid prototyping; Functional proto-
types: Selective aggregation: Large structures: Multimodal structures.

1. Introduction investigated for its potential application to construc-
tion automation. Small masonry structures were pro-

In a companion paper [1], we conducted a critical
review of the specifications for construction automa-
tion. We concluded that—as is often the case in
manufacturing automation—the process itself needed
to be revisited in order to adapt construction from
manual to automated fabrication. This paper illus-
trates our purpose with a new approach to masonry.

A new process derived from the emerging field of
additive manufacturing processes was developed and

* e-mail: pegnaj@rpi.ecu.

! Discussion is open until August 1997 (please submit your
discussion paper to the Editor on Construction Technologies and
Engineering, M.J. Skibniewski).

duced by selective deposition of alternating thin
layers of sand and Portland cement that were then
cured with steam. Each layer's geometry had the
desired cross-section of the structure. Eventually, the
whole structure was built recursively out of multiple
thin layers of mortar.

The fundamental paradigm underlying additive
‘manufacturing processes is that a structure can be
built by incremental addition of elemental material in
a manner that can easily be automated. As such,
complex operations such as material removal, mate-
rial processing, material handling and assemblies are
reduced to a large number of identical simple opera-
tions. The massive complexity of information pro-
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CHAPTER 11

QUANTIZATION EFFECTSIN SHALLOW POWDER BED
VIBRATIONS

Joseph Pegna
Freeform Fabrication Laboratories, Department of Mechanical Engineering,
Ecole Polytechnique de Montréal, Montreal (Québec), Canada H3C 3A
E-mail: joseph. pegna@polymtl.ca

Jun Zhu

Freeform Fabrication Laboratories, Department of Mechanical Engineering,
Ecole Polytechnique de Montreal, Montreal (Québec), Canada H3C 3A
E-mail: jun.zhu@polymtl.ca

Few researches have characterized the vibrational behavior of shallow
powder beds by analysis and simulation. Even fewer have pursued an
experimental approach. Simulations of vertical vibrations to date de-
scribe a phenomenon that is mostly chaotic in nature, though a few
periodic, yet unstable, modes have been identified. Experimental results
mostly agree, but also point out some unexplained singular modes with
remarkable stability that our experiments confirmed. These modes can
be explained if we assume that the laws of elastic collisions do not hold
at very low impact velocities so that a minimum *quantum” of Kinetic
energy be exchanged between the particle and the vibrating plate. A
new impact model that matches classical laws except when approaching
minimum impact velocity is introduced. This minor chink in the laws
of elastic rebound has a profound effect on simulated behavior. It forces
particle motion from a chaotic stateinto discrete, yet complex, but finite
“allowed states’. Transition between states is akin to a random walk.

11.1. Introduction
Vibrations of bulk material are a poorly understood, yet often used empiri-

cal mechanism to induce fluidization or flow of powders when fluid transport

0926-5805,/97/$17.00 Copyright © 1997 Elsevier Science B.V. Al rights reserved. isnot indicated. For analytical purposes, the rather sparse literature on the
PII $0926-5805(96)00166-5
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Pegna, J.; Exploratory Investigation of Solid Freeform

Material-Agnostic Additive Manufacturing Construction, Automation in Construction, Vol. 5, no.5,
pp. 427-437 (Mar. 97)

Pegna, J. and Zhu, J.; Quantization effects in shallow
powder bed vibrations, Advances in Mechanics of Solids.
N FREE FORM August 2006, 229-257
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Magnified view of ribbon of 51 functionally
Material-Agnostic Additive Manufacturing coated R-SiC 0.001” filament ribbon

Feinroth, H. et al. (2010) Ceramics in Nuclear

Additive Manufacturing: Applications (eds Y. Katoh, et al.),
. doi: 10.1002/9780470584002.ch4

* Not necessarily flat

* Not necessarily layers
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Additive manufacturing of fibers

* LCVD-Based Fiber Laser Printing: Material-Agnostic AM

* Proprietary Technology
(with certain government rights)

US Pat. 10,047,015B2
N CN Pat. 104204315 B
N JP Pat. 6353368

N\ Eur. Pat. 2 804 969

Features
Multi-material &
Functionally graded
materials

. Variable diameter
profile

Y

Maxwell, J.L., Pegna, J., DeAngelis, D., Messia,
D.; Three-Dimensional Laser Chemical Vapor
Induced Deposition of Nickel-Iron Alloys, Materials
Plasma Research Society. Vol. 397, Advanced Laser
Processing of Materials, pp. 601-606 (1996)

Laser Beam

FFF has the only facility in the

SiC Filament

Laser Array _Llmm world dedicated to production
, : 4 of fibers using LCVD.
— — —
L m
- - e — e ———— https://youtube.com/shorts/CERn_DdPhWA
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1 % D Printing
Multi-material fibers

Opening for Integrated
multifunctional fiber
reinforcement in
composite materials
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Example: Fuel-in-Fiber:
1 % D Printed Fiber-Embedded TRISO-like fuel

TRISO-inspired multifunctional SiC fiber providing fuel containment and structural reinforcement to a SiC CMC.

£
=L
Fuel kernel o
High density (5004 m) <
PyC (.0amm) : <
SiC \
(.035mm)
© 0.920mm
Low density ;
PyC (.095mm)

n-porous C ' Nuclear fuel PyC SiC

(|
L Overcoat
é N é i P

Unit Nuclear FueI CeII Cross-Section
N Li, W., Shirvan, K., Harrison, S. and Pegna, J.; Innovative

US Patents 10,546,661 B2 and 11,518,719 B2 accident tolerant fuel concept enabled through direct
FREE FORM ) manufacturing technology, Applied Energy, Vol. 264 (2020)
DE-SC0018734, Dr. Frank Goldner, PM https://doi.org/10.1016/j.apenergy.2020.114742
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8 Embedded Wire CVD (EWCVD):
Direct Deposition of SiC-SiC CMCs onto
Zircalloy cladding

Optical Microscope Views:

Zone 1 Diamond sawed Diamond ground lateral surface

FREE FORM Zone 2 Diamond sawed

A\ FIBERS



Homogeneous Joining of SiC-SiC Composites
Tube pairs homogeneously joined by SiC-SiC CMC

ORNL supplied 1” long
SiC/SiC CMC tube
samples

N FREE FORM
3.\ FIBERS DE-SC0021665, Dr. Chuck Wade, PM. US Patent Application: 17/661,059
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Methodology

Smart structural fibers
make Intelligent composites
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17
Intelligent Composite < Smart Fibers

V4 DIGITAL TWIN

MACHINE
LEARNING
& Al

V4 BIG DATA
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///

http://www.mforesight. oro <S8

Bio-equivalent: Skin nerve endings.

DATA COLLECTION Fingertip: 241/cm?

Fingers: 81/cm?
Foot: 21/cm?

FREE FORM https://doi.org/10.1152/in.00313.2020
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Source: Tactile innervation densities across the whole
body, Giulia Corniani and Hannes P. Saal, 19 Oct 2020
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a8 Sample Fiber-Integrated Device 1 o
Wireless Thermocouple / Thermal flux Sensor
» 2 functional components: Ty -
* Transducer (thermocouple) — Phase |
. ] Threshold Voltage, Va,
* Transmitter (Gunn Diode) — Phase Il i . "
o
D Anode C:
e =
/ N* N' GaAs or GaN :
/ Substrate
/
Metal Contiacts / N Buffer layer I 10ptm or 10 GMz
\‘\\\ :‘ N® GaAs Substrate
| M | e————d
Heat Sink - .
U Pathade Symbol of Gunn Diode

Nuclear Tech justification:
e GaN or GaAs device: Robust under Gamma and neutron

FREE FORM irradiation.
A\ FIBERS * Working principle only depends on doping differential.

Construction of Gunn Diode




Sample Fiber-Integrated Device - - swenvew

Not to scale
GaAs or GaN ® Anamorphosed
Materials
SiC Molybdenum
BN
SizN,

SiC

Niobium ~3 cm (30,
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Sample Fiber-Integrated Device

Operation
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Sample Fiber-Integrated Device - roten view
Antenna (Dipole) O p e rat i 0 n

Anamorphosed

|Thermopile (DC Voltage bias)

Antenna (Dipole)

Oscillator (Gunn Diode)
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Sample 1%-D Printed Device
Equivalent Circuit

Antenna

Antenna
Gunn Diode
Thermopile / HFS / TC
' 60
Wz GaN

Sum Zpm | E 40
E

Zb GaN N =
:
]
) ¢ \ | I =

GaAs w0

Example of calculated power output § A
i 5 n
— [aH -2{'} — \j v \-'
|3F n Example of calculated power spectrum b
# .40
40 60 80 100 0 1000 2000 3000 4000
Frequency [GHz] Frequency [GHz|
Source: Alekseev, E., Pavlidis, D., Sutton, W.E., Piner, E.,
RN FREE FORM Redwing, J.; IEICE Trans. on Electronics Vol.
“\ FIBERS

E84C No.10 pp.1462-1469 (2001)



Fiber-Integrated Niobium-Molybdenum TC
Demo & Characterization

Test fiber
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Niobium-Molybdenum Thermocouple
Demo & Characterization -

18

o First cycle
o Second cycle

18
16

16 14

Niobium-Molybdenum TC

12

10

Thermoelectric output (mV)

mV)

Voltage (

0 300 600 900 1200 1500 1800 2100
Temperature (°C) 04.GAS000S-45b

Source:
S. C. Wilkins, “Characterization and Materials-Compatibility Tests of
Molybdenum-Niobium Thermocouples,” Seventh International
Symposium on Temperature: Its Measurement and Control in Science
0 200 400 600 800 1000 1200 1400 and Industry, Toronto, Ontario, Canada, April 28-May 1, 1992.

Temperature (¢C) S.C. Wilkins, et al., “Low Cross-Section Mo-Nb Thermocouples for
Nuclear Applications: The State-of-the-Art,” Fifth Symposium on Space
Nuclear Power Systems, pp 499-502, Albuquerque, New Mexico,
January 11-14, 1988.
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Conclusions & Ongoing Work

GOAL: Establishing Seminal Transition to Integrated
Intelligent Fuel by AM.

ACHIEVEMENT: First demonstration of a fiber
integrated thermocouple

CHALLENGE: Fiber-Integrated Gunn Diode remains

to be demonstrated FREE FORM

N\ FIBERS

TECHNOLOGICAL IMPACT:

1. Supports feasibility of large density integrated
low-cost sensors.

2. General approach to multifunctional fibers: e.g.

Flexible devices in fiber-reinforced CMCs ipegna@fffibers.com
3. Low-cost devices (~10’s m¢/device) jvervlied@fffibers.com
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