Office of

EN ERGY NucLEAR ENERGY

Gallium Nitride-based 100-Mrad
Electronics Technology for Advanced
Nuclear Reactor Wireless
Communications

Advanced Sensors and Instrumentation (ASI)  PI: F. Kyle Reed, PhD

Annual Program Webinar

October 30 — November 2, 2023 Oak Ridge National Laboratory



Project Overview

Research Purpose and Scope:

« Electronics technologies available for present day, in-service nuclear reactor sensing and communications
are unsuitable due to high radiation and high temperature environments

« This project will investigate and demonstrate the suitability of gallium nitride (GaN) HEMT-based
electronics for reactor sensor interfacing and wireless communications

« Successful completion will advance the state-of-the-art in harsh environment electronics technologies for
present and future advanced reactor applications
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Technology Impact: Why Radiation-Hardened Electronics?

» Placing sensors and associated electronics closer to a nuclear reactor core will improve reactor
control and operation through increased signal accuracy, precision, and fidelity resulting in safer

and more efficient energy production

« Electronics placed closer to sensors can multiplex and/or processes signals, reduce bandwidth
for transmission, and reduce cabling and penetration requirements lowering costs and

increasing infrastructural integrity
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Technology Overview

Investigate and demonstrate the suitability of gallium nitride (GaN) HEMT-based
electronics for reactor sensor interfacing and wireless communications.

« Designing low complexity, cost effective, and radiation robust sensor signal conditioning and
wireless transmission circuitry will increase safety and reliability while reducing maintenance
costs associated with nuclear reactors, spent fuel casks, and emergency robotics

« Complex algorithms can be performed in a low-radiation environment
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Radiation Effects on Semiconductor Devices

* Neutrons
Projectile — Neutrons will transfer energy to interstitial
Particle Displaced atoms displacing atoms which may recombine
Atom with dopant or impure atoms producing stable
defects

— Minority carrier removal and increased
material resistivity are associated with neutron
displacement damage
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HumanComputer Interaction [cs.HC], Universite de la Mediterranee — Aix-Marseille I,
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Si-Based Electronics Components Radiation Limits

Neutron Displacement Damage [1]

Total lonization Dose (TID) Damage [2]

Max Fluence

(nfem?) Displacement effect TID (rad) TID effect
Diodes/ 13 115 | 1 leakage current; S
Photodiodes 1010 1 forward voltage threshold o0 A\PRGIOSEEES
LEDs 1012-104 | light intensity 107-108 0.25 dB attenuation
BJTs 11015 Current gain degradation 10°-107 STkl CElNC EREE
1 leakage current
JFETs 101 T channelliesletivity; >108 | Minimal effects
| carrier mobilities
SiC JFETs 1016 T channe ekl >108 | Minimal effects
| carrier mobilities
15 T channel resistivity; 5 1 threshold voltage;
WOSHRETS 10 | carrier mobilities e 1 leakage current
CMOS 1015 T channel resistivity; 108 variation in threshold voltage;
| carrier mobilities variations in leakage current

[1]1 Neamen, Donald A. Semiconductor physics and devices: basic principles. New York, NY: McGraw-Hill,, 2012.
[2] H. Spieler, "Introduction to radiation-resistant semiconductor devices and circuits." AIP Conference Proceedings. Vol. 390. No. 1. American Institute of Physics, 1997.



« High bonding in binary and ternary nitrides makes GaN devices intrinsically resistant to
displacements

« Enhancement-mode (E-mode) and depletion-mode (D-mode) device fabrication and operation is
possible without requiring gate insulation for the field effect devices

« The 2D electron gas (2DEG) allows for channel charges as high as 3x10'3 cm? without
introducing dopants, which allows for high channel mobilities by reducing impurities

« GaN HEMTs have been shown to withstand 600 Mrad ionizing dose (neutron limits are under

investigation)
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GaN HEMT Fabrication Process

* Process flow for monolithic

enhancement-depletion mode circuits T
is being developed on commercially OSU GaN Inverter Fabrication Process

obtained epitaxial wafers

(p-GaN/AlGaN/GaN/sapphire) Ry T B
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« Epitaxial wafers from vendors are
being qualified for device fabrication

Schottky metal (NifAu/Ni) deposition
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Device Packaging and Selection

_ _ _ Die # Device Mode Size, W/L (um)
» Dies wereldmoudnted and }[’V';e ponilebd toda Sl OAK-T1-09 Die #1 TD1-2 D-mode 20/5
rrier red to a printed circuit boar
carre _SO © P OAK-T1-09 Die #1 TD1-6 E-mode 80/5
* PEEK insulated cables were soldered to the ST B S s Dol
board for signal conduction _
e ecab o] (e OAK-T1-09 Die #1 TD1-11 E-mode 5/5
. e8 cables were transitioned to Cat5e ST Lo [ LLY b SV T
cable to the DAQ system ,
_ , OAK-T1-09 Die #1 TD1-14 E-mode 20/5
« Transistors were selected across 3 die (TD1,
TD2, and TDS5) which would receive the largest OAK-T1-11 Die #2 TD2-2 D-mode 20/5
neutron fluence OAK-T1-11 Die #2 TD2-6 D-mode 80/5
OAK-T1-11 Die #2 TD2-7 D-mode 80/5
OAK-T1-11 Die #2 TD2-8 D-mode 20/5
: &l — OAK-T1-11 Die #2 TD2-11 D-mode 20/5
@ &ofofolors (® o 8 - OAK-T1-11 Die #2 TD2-14 D-mode 20/5
/;jig'uuu.ummsﬁ R B
e | - OAK-T1-11 Die #1 TD5-3 E-mode 200/5
— : OAK-T1-11 Die #1 TD5-4 E-mode 10/5
; ITITITITION = i 6 | M - ! \ .
T o NENEET— OAK-T1-11 Die #1 TD5-12 D-mode 80/5
Reiciasio 1'e ANERRCRENRN 4 OAK-T1-11 Die #1 TD5-13 D-mode 40/5




June lrradiation
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June OSURR Radiation Profile
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Pre- and Post-Irradiation |-V Characteristic Sweeps of TD1-2

« Current-voltage (I-V)
characteristic curves were
measured during irradiation

* The plots of the IV
characteristics taken of TD1-2
a D-mode device are shown

 The upper plots show the drain
current vs drain voltage plots
for varying gate voltage

 The lower plots show the drain
current vs the gate voltage for a
3 V drain voltage

 The drain current in both sets
of plots reduced after irradiation
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Drain current of TD1-2 in Saturation Over Time in Reactor Pool

Moving dry tube to reactor
core

ID vs time characteristics for TDl—2(D—mod¥; W=20; L=5); Vgate (V) = 1.0; Vd (V) = 2.99994
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Threshold Voltage of TD1-2 in Over Time in Reactor Pool

Threshold voltage vs time for TD1-2(Dmode; W=20; L=5)
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Wireless System and Testbed Design

 Awireless system was devised and tested emphasizing
transmitter simplicity

« Sensor signals were binary encoded with pulse-width modulation Vector Souree
(PWM)

* Frequency-shift keying (FSK) is used to modulate and
continuously transmit the sensor data

« Demodulation with frequency-translating finite impulse response
(FIR) filter to shift the emulated sensor signal back to baseband
with optimal decimation minimizing noise and processing time

* Frequency orthogonality is exploited for multiple sensor channels i

« Atestbed was constructed to evaluate the devised communication
scheme using three software defined radios (SDRS) (,:»««

« Two sensor transmitters were emulated with ADALM-PLUTO o s v 5510
software SDRs with center frequency of 915 MHz L=

Transmitter chain

VCO (complex)

Multiply Const Add Const Sample Rate: 1.92M Virtual Sink
Constant: 333.333m Constant: 333.333m Sensitivity: 1.58496M Stream ID: "fsk_out 0"
Amplitude: 500m

VCO (complex)
Multiply Const Add Const Sample Rate: 1.92M Virtual Sink
Constant: 200m Constant: 600m Sensitivity: 3.14155M Stream ID: "fsk_out 1"

Amplitude: 500m

Receiver chain

Binary Slicer

QT GUI Waterfall Sink
Name: Filtered Voltage_0'
FFT Size: 1024

Center Frequency (Hz): 0
Bandwidth (Hz): 1.92M

Sample Rate: 1.92M

Center Frequency: 915.994M
LO Frequency: 915M

Sample Rate: 1.92M

* The receiver was implemented on a third SDR e ﬂ:m“
fre|

adrats Demod
RF DC Correction: True Taps: firdes low_pass(L0, Threshold (dB): -70 g:m. ;::5'; Binary Slicer
g| Center Frequency: 916.194M Alpha: 1 S

BB DC Correction: True

Emulated Rx Emulated Gain Mode (RX1): Slow Attack Sample Rate: 1.92M
Filter Configuration: Auto
Sensor 1 Sensor 2 RE Dot (o 20m
QT GUI Waterfall Sink
QT GUI Waterfall Sink Name: Filtered Voltage_1
Name: SOR Output FFT Size: 1024
SDR 1 SDR 3 SDR 2 FFT Size: 1024 Center Frequency (Hz): 0
Center Frequency (Hz): 915M Bandwidth (Hz): 1.92M
’|i ’ N Bandwidth (Hz): 1.92M
Host




Wireless Testing Results

Sensor1 Sensor 2

SDR Dutputl /

Data from two sensors were successfully received
Nominally the sensors had error due to noise of 1-

z.mzueﬂzul—E _ l | - 20,
e _ ] ' Transition - « To emulate a sensor, the input voltage of sensor 2
@ 1.00e+01 . : - in sensor 2 was changed from 0.5 Vto an 0.85V (~41%
= 5.00e+00—f Change)
] « The emulated sensor voltage corresponds to the
RS SEEE e duty cycle of the sensor transmitter (0.5 V maps to a
Frequency (MHz) 50% duty cycle, 0.85 V maps to an 85 % duty cycle)
Received signal « Upon transition the error appears to have spiked
due to a delay in the GNU-radio software to adjust
the output pulse density
Emulated Sensor 2
SR _ 2 i i e Emulated Sensor Error
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Sensor 2 after filter shift to baseband



Concluding Remarks

« State-of-the-art silicon-based electronics are not suitable for high temperature radiation
environments associated with nuclear reactors and spent fuel storage

« Three sets of E-mode and D-mode GaN HEMTs were fabricated and tested in rad-soft conditions
« E-mode and D-mode GaN HEMTs were irradiated to 10'®n/cm? in the OSU reactor with little effects

« The devised binary encoded, frequency shift keying modulated communication scheme was
successfully simulated

« Two journal publications are nearing completion and will be submitted before the end of the
calendar year, a few more are anticipated.

Future work (FY24):
 Irradiation planned to find upper bound of neutron limitation of the OSU fabricated GaN HEMTs

 Irradiation planned to compare the OSU fabricated GaN HEMTs with commercial GaN HEMTs and
SiC JFETs

« Compact device models will be generated which include radiation and temperature effects

« GaN-based circuits supporting wireless communications will be designed and simulated with
neutron effects
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