

Advanced Sensors and Instrumentation

High Fluence Active Irradiation and Combined Effects Testing of Sapphire Optical Fiber Distributed Temperature Sensors

Advanced Sensors and Instrumentation (ASI) Annual Program Webinar October 24 – 27, 2022

Researcher: Kelly McCary, M.S.

Idaho National Laboratory/Radiation Measurements Laboratory

Project Overview

• Goals and Objectives

Investigate the in-pile performance of sapphire optical fiber temperature sensors and to develop clad sapphire optical fibers for in-pile instrumentation. Evaluate the distributed sensing performance of the sensors through optical backscatter reflectometry under combined radiation and temperature effects, and high fluence.

- Objective 1: Fabricate sapphire optical fiber sensors.
- Objective 2: Evaluate the clad sapphire fiber to verify single-mode behavior and determine and characterize light modes supported by optical fibers.
- Objective 3: Characterize in-pile temperature sensing of sapphire optical fiber and combined temperature and irradiation effects.
- Objective 4: Evaluate the lifetime and sensing performance of the sensor under irradiation to high neutron fluence.

• Participants (FY2022)

- Idaho National Laboratory: Lead organization
 - Dr. Joshua Daw, Kelly McCary
- The Ohio State University
 - Dr. Thomas Blue
- The Massachusetts Institute of Technology

• NRL

FY2020		Status	Scheduled	Actual	Notes
Task 1	Clad Sapphire Optical fiber	Complete	January 2020	March 2021	Delayed due to procurement of sapphire fibers
Task 2	Characterize Sapphire Fiber	Complete	June 2020	April 2021	Delayed -covid travel restrictions
Task 3	OSURR Irradiation	Complete	October 2020	April 2021	Delayed -covid travel restrictions
	Deliverable 1: Sapphire Fibers	Complete	September 2020	March 2020	
	Deliverable 2: FY20 Annual Report	Complete	September 2020	September 2020	
FY2021					
Task 2	Characterize Sapphire Fiber	Complete	June 2020	April 2021	Delayed -covid travel restrictions
Task 3	OSURR Irradiation	Complete	October 2020	April 2021	Delayed -covid travel restrictions
Task 4	Data Analysis: OSURR Data	Complete	May 2022		
Task 5	MITR Irradiation	Ongoing	July 2022	TBD	Pushed by Facility
	Deliverable 1: Experimental Data	Complete	September 2021	April 2021	
	Deliverable 2: FY21 Annual Report	Complete	September 2021	September 2021	
FY2022					
Task 4	Data Analysis: MITR	Ongoing	September 2022	October 2022	
Task 5	MITR Irradiation	Onging	July 2022	July 21st, 2022	Pushed by Facility
	Deliverable 1: Journal Paper	Planned	March 2022	Cent II	
	Deliverable 2: Final Report	Ongoing	March 2022		

Technology Impact

- This work is advancing nuclear technology by characterizing and demonstrating a new sensor technology with the potential to make measurements with high spatial and temperature resolution at higher temperatures than prior optical sensors. This technology can also be applied to measurements other than temperature.
- This research will deliver modern optical fiber sensing techniques usable in multiple extreme environment applications. In the area of nuclear fuel/material testing, these fibers will enable access to operational data with excellent time and space resolution during irradiation testing.
- Commercialization is underway by Luna Innovations. This research represents the opportunity to close technology gaps and demonstrate the potential of sapphire optical fibers.

Results and Accomplishments

Sapphire fiber cladding:

- Four one-day irradiations were completed with the purpose of cladding sapphire fiber
 - Cladding Irradiation #1: Completed January 24, 2019
 - 2 fibers, 100 um OD, with 2 FBGs inscribed by UPitt
 - 1 fiber, 100 um OD, without FBGs
 - 1 fiber, 75 um OD, with 13 FBGs inscribed by FemtoFiberTec
 - Cladding Irradiation #2: Completed March 13, 2020
 - 4 fibers, 100 um OD, each with 1 FBG inscribed by UPitt
 - Cladding Irradiation #3: Completed March 12, 2021
 - 2 fibers, 125 um OD, each with 4 FBGs inscribed by FemtoFiberTec
 - Clad Irradiation #4: Completed March 19, 2021
 - 4 fibers, 125 um OD, each with 4 FBGs inscribed by FemtoFiberTec

Post-Processing:

• Thermal annealing, polishing and splicing

Challenges: Annealing, Splicing

Results and Accomplishments: Overview

- Sapphire fiber preparation:
 - Fiber procurement
 - FBG inscription
 - Fiber cladding irradiations
 - Annealing
 - Mode-stripping treatment
- Out of pile furnace testing
- Heated irradiation at OSURR
- MIT Irradiation Onging

Results and Accomplishments: Furnace Testing

Sapphire optical fiber sensors were tested in a box furnace at up to 1500°C prior to deployment in OSURR

- 8 in. heated region
- Interrogated with a Luna Innovations OBR 4600
- All the fibers were placed in alumina tubes that were closed on the heated end, then spliced to silica lead-out fibers
- When the furnace was heated past 1100°C, the sensing mechanism failed

Results and Accomplishments: Furnace Testing

Top: Backscatter profile of sensor #1 before, during, and after the out-of-pile heating from room temperature to 1200°C. Bottom: Top image zoomed in on the last three FBGs in the fiber.

Top: Backscatter profile of sensor #1 before, during, and after the out-of-pile heating from room temperature to 1500°C. Bottom: Top image zoomed in on the last three FBGs in the fiber.

Top: Frequency response of FBG #12 before, during, and after the out-of-pile heating from room temperature to 1200°C. Bottom: Frequency response of FBG #12 before, during, and after the out-of-pile heating from room temperature to 1500°C.

Sensor 1: 75 um diameter – 13 FBGs inscribed by FemtoFiberTec

- Annealed to 1500°C in air, 23.5 in. long
- Sensor 2: 100 um diameter 2 FBGs inscribed by UPitt
 - Annealed to 1500°C in air, 13 in. long
- Sensor 3: 100 um diameter 1 FBG inscribed by Upitt
 - Annealed to 1200°C in air, 15.25 in. long
- Sensor 4: 100 um diameter No FBGs
 - Annealed to 1500°C in air, 9.25 in. long
- Sensor 5: 100 um diameter 1 FBG inscribed by Upitt
 - Annealed to 1500°C in air, 16.25 in. long

The heated irradiation was designed to test the fibers at various temperatures from ambient to 1600°C

- Total fluence: 3.2 x 10¹⁷ n/cm²
 - Thermal: 2.3 x 10¹⁷ n/cm²

Backscatter profile of sensor #1, 75 um OD sapphire fiber featuring FBGs inscribed by FemtoFiberTec.

	Day	Hours	Power (kW)	Furnace Temp. (Celsius)	Notes
	1	7	450	off/200	
	2	7	450	400/600	
1	3	7	450	800	
	4	4	450	900	4 hours, some hours for another customer at 5 kw
	5-1	0		1000	Fuse blow
	5-2	7	450	1000	
	6	7	450	1100	
	7	7	450	1200	
	8	7	450	1300	
	9	7	450	1400	1118 114
	10	7	450	1.5 hrs at 800, 2 hrs at 1000, 2 hrs at 1200	1 Seattle State
	11	7	450	1400 1 hr at 1500	Fuse blow during heating
	12	6	450	1500 1 hr at 1600	

- The measurement was resolved at the locations of the FBGS
- Sensor 1 75 um OD performed the best
- Sensor gets less noisy with higher temperatures

 Similar failure mechanism was observed at 1600°C in-pile as was observed in out of pile testing.

- After signal loss and amplitude reduction the FBGs recover as the fiber cools to room temperature
- Similar amplitude reduction up to 1500°C that was seen in furnace testing

Backscatter profile and wavelength response of FBG #12 for sensor #1 for the last day of irradiation heating.

Backscatter profile and wavelength response of FBG #12 for sensor #1 for the last day of irradiation cooling.

Results and Accomplishments: MITR Irradiation

- 8 Sensors prepared, installed, and currently under irradiation at MITR
 - 5 Sapphire sensors
 - 125, 100, and 75 um diameter fibers with inscribed FBGS
 - Clad, and annealed
 - Placed in silica microcapillary tubes to prevent any material interaction
 - 3 Silica Sensors
 - Pure silica core single mode fiber baseline
 - iXblue and Technica type-II FBGs
 - Active Compensation sensor

Results and Accomplishments: MITR Irradiation

- 8 Sensors prepared, installed, and currently under irradiation at MITR
 - 5 Sapphire sensors
 - 125, 100, and 75 um diameter fibers with inscribed FBGS
 - Clad, and annealed
 - Placed in silica microcapillary tubes to prevent any material interaction
 - 3 Silica Sensors
 - Pure silica core single mode fiber baseline
 - iXblue and Technica type-II FBGs
 - Active Compensation sensor

Conclusion

Challenges:

- Procurement, inscription, and processing of sapphire
 - Non-commercial supplier of sapphire fibers experienced unforeseen issues
 - Inscription of sapphire fibers is not a trivial task
 - Splicing fibers can produce variable results
- Handling tritium-implanted fibers at INL
- Navigating through travel restrictions and shutdowns

Conclusions:

- Objectives 1-3 have been completed and Objective 4 is ongoing
- Heated irradiation indicates potential for sapphire fiber-based sensors to be used in extreme environments beyond silica fiber limits, further investigation is required to determine radiation resistance

Kelly McCary

Radiation Measurement Scientist, Radiation Measurement Laboratory-ATR Idaho National Laboratory Kelly.mccary@inl.gov W (208)-526-2601

We would like to acknowledge the support of The Ohio State University Nuclear Reactor Laboratory and the assistance of the reactor staff members, Andrew Kauffman, Dr. Susan White, Kevin Herminghuysen, Matthew Van Zile, and Maria McGraw for the irradiation services provided.

Special thanks to Dr. Blue, Dr. Jones, and Dr. Birri for their assistance while at Ohio State.

This work was supported by the U.S. Department of Energy, Office of Nuclear Energy as part of a Nuclear Science User Facilities experiment

Thank You