



Advanced Sensors and Instrumentation

# Linear Variable Differential Transformers (LVDTs)

Advanced Sensors and Instrumentation (ASI) Annual Program Webinar October 24 – 27, 2022

Principle Investigator: Kurt Davis

Idaho National Laboratory

# **Project Overview**

### Background

- An LVDT (Linear Variable Differential Transformer) is an electromechanical transducer that converts object into a corresponding electrical signal. Submicron motions are resolvable.
- Many phenomena produce, or can be used to produce, length changes which in turn can be measured and converted into a measurement of the phenomenon (e.g., pressure, temperature).
- The commercial LVDT device has proved to be a robust and versatile sensor, but it falls short when used at elevated temperature or when irradiated because of the materials used in construction.
- Since 1965, IFE under the Halden Reactor Project has been developing irradiation resistant high-temperature LVDTs. They are the world leader when it comes to manufacturing LVDTs for irradiation testing.



D = (Va - Vb) / (Va + Vb)

#### Halden LVDT



# **Project Overview**



### Design of TREAT LVDT Experiment.

Zhangxian Deng (PI), Alex Draper (Student), and Joshua Poorbaugh (Student)



### Wireless Transmission Heng Ban (PI), William Spirnock (Student)



### Commercial LVDT Evaluation

Kurt Davis (PI), Austin Fleming, and Malwina Wilding

# BSU - Design of TREAT LVDT Experiment

#### **Working Principle of the Sensor**

Impulse neutron radiation  $\rightarrow$  Fusion gas release  $\rightarrow$  Pressure increment  $\rightarrow$  Deformation of bellows  $\rightarrow$  LVDT core displacement  $\rightarrow$ Modulated voltage from LVDT

#### **Problem**

A pressure reading of 12.7 psi was observed immediately after the neutron radiation spike; fusion gas release from the fuel pellets becomes significant only after the first 2.5 seconds.

#### **Hypothesis**

The transient response and steady-state response are due to the thermal expansion of the pressure sensor.

#### **LVDT+Bellows Pressure Sensor**







### BSU - Design

### Objective

Design a test rig that can generate controllable thermal expansion in LVDT, especially the relative deformation between the LVDT core and coils.



# **BSU - Finite Element Modeling**

### Objective

- Check if the set screw or the end cap can survive the thermal stress
- Check if the Setup #1 can hold the LVDT core in place



### BSU - Assembly



### Setup #1 actual assembly



### Setup for tube furnace testing



# **BSU - Testing Procedures**

### **Run #1**

- Tested at 20, 200, 400, and 600°C
- Took 3-4 hours to reach thermal equilibrium between temperature settings
- Assembly was secured in two places in the support frame

### Run #2

- Tested at 20,400, 600, and 700°C
- Took 3-4 hours to reach thermal equilibrium between temperature settings
- Assembly was secured in two places in the support frame

### Run #3

- Heated from 20 to 300°C, stopping at intervals of 50°C
- Did not wait to reach thermal equilibrium when collecting data
- Assembly was secured at one point



### **Tube Furnace Configuration**



### **BSU - Results**



# **BSU - Conclusions and Future Work**

### Conclusions

- Designed a test rig to study the thermal drift in LVDT
- Evaluated the test rig strength and feasibility at elevated temperature using COMSOL Multiphysics
- Collected preliminary results from the LVDT up to 700°C
- Thermal drift is severe in all three test runs especially beyond 150°C
  - □ Set screws might have failed. Only had 1-2 threads engaged
  - □ Inaccurate temperature readings
  - □ Magnetic core was attached at an angle

### **Future Work**

- Increase wall thickness to improve number of threads engaged
- Create hole and room inside testing assembly for thermocouple installation
- Enhance alignment of magnetic core
  - □ Thread reference material and core
  - □ Use only one reference material rod

### Pitt - Wireless Transmission

### **Theoretical Modeling**



- Developed theoretical models (i.e., transfer function) to incorporate the LVDT with the wireless transmission coils
- Enables us to predict the output of the system, which can be verified through computational modeling and experimentation

| Increase 5%                   |                   |                                  |                   |  |
|-------------------------------|-------------------|----------------------------------|-------------------|--|
| Input<br>Voltage              | Output<br>Voltage | Input<br>Current                 | Output<br>Voltage |  |
| Parameters                    | Result Max Value  | Parameters                       | Result Max Value  |  |
| Mutual Inductance coefficient | 10.65%            | Mutual Inductance<br>coefficient | 10.25%            |  |
| Frequency                     | 3.00%             | Frequency                        | 5.00%             |  |
| All Resistors                 | -3.02%            | All Resistors                    | <0.01%            |  |
| All Inductors                 | 3.00%             | All Inductors                    | 5.00%             |  |
| Input                         | Output            | Input                            | Output            |  |
| Voltage                       | Current           | Current                          | Current           |  |
| Parameters                    | Result Max Value  | Parameters                       | Result Max Value  |  |
|                               | Change            |                                  | Change            |  |
| Mutual Inductance coefficient | 12.29%            | Mutual Inductance<br>coefficient | 11.88%            |  |
| Frequency                     | -1.91%            | Frequency                        | <0.01%            |  |
| All Resistors                 | 1.83%             | All Resistors                    | 5.00%             |  |
| All Inductors                 | -1.91%            | All Inductors                    | <0.01%            |  |

- Performed sensitivity analysis on LVDT/wireless transfer system to explore how parameters influence results at different inputs and outputs
- Gives insight to system performance and design optimization
- Tells us that the coupling coefficient has the largest overall affect on the system



- Performed similar analysis on the interaction of two coils for the wireless transfer system for various inputs and outputs
- Based on the results, we were able to determine the most effective input and output combination that results in the least variation of the coupling coefficient (current input, voltage output)

# **LVDT Computation Modeling**

| r=0 | 10mm |
|-----|------|

| Parameters              | Value |
|-------------------------|-------|
| Magnetic core radius    | 1.5mm |
| Magnetic core length    | 10mm  |
| Coil outer radius       | 4.5mm |
| Primary coil length     | 4mm   |
| Secondary coil length   | 4mm   |
| Gap between coils       | 2mm   |
| Turns of primary coil   | 1000  |
| Turns of secondary coil | 1000  |
| Working frequency       | 1000  |
| Power voltage           | 3V    |
|                         |       |

- Modeled an LVDT in COMSOL to simulate performance based on parameters from a published journal article
- This was done to acquire data for design optimization purposes without extensive experimentation
- This model can also be used to verify the accuracy of the transfer function for a LVDT/inductive coupling assembly



- The plots to the right show the results of the simulation and the discrepancy between the simulation and experiment
- The simulation and experiment results have a low discrepancy making the model quite accurate

# Stainless Steel Shielding Experiments



- Stainless steel shielding experiments were performed to simulate cladding conditions and determine how shielding layer position and thickness affects the coupling of the power/signal transfer coils
- A ferrite core wound with copper wire separated by three layers of stainless steel shielding with another coil wound around a plastic bobbin



- The largest coupling coefficient occurs with no shielding applied
- Results show that multiple layers of shielding produce adequate power/signal transmission
- Multiple layers of cladding within a nuclear reactor will not result in extreme signal attenuation

# High-Temperature Wireless Transfer Model





- Designed a high-temperature model composed of two coils, a highly permeable inner bobbin, two layers of stainless steel, and an outer layer of carbon steel
- This model is tested at room and high temperatures inside of a tube furnace to simulate reactor-like conditions
- Model will be tested up to 500°C
- Goal is to analyze the affect of a high-temperature environment on the coupling of the system

# Conclusions

- Use of theoretical, computational modeling capabilities prove effective to analyze how various parameters affect the system without extensive experimentation
- Sensitivity analysis indicate that the current input and voltage output combination produces accurate results
- Stainless steel experiments show that this theory can be applied in reactor conditions in which several layers of cladding are present
- High-temperature model will provide insight on how temperature affects the coupling of the system

**RDP Group elongation sensor** 



D = Va / Vb



#### **IFE Halden LVDT**



D = (Va - Vb) / (Va + Vb)



**Testing of RDP Group elongation sensor** 





Vertical orientation Test temperature 20, 300, 600°C Ultra pure argon @ 2 l/m Full range of motion +/- 5 mm







Time (hr)

21

- LIN56 transducer performed well 20-300° C (FR nonlinearity 0.7-0.9)
- The LIN56 sensor may be viable for in-pile instrumentation
- 600° C temperature limit, sensor drift, FR nonlinearity 5.8
- FY23 Investigation into the cause of the sensor failure
- FY23 Testing LIN56 sensors, limiting temperature, drift, sensitivity, performance

Kurt Davis Researcher (INL) Kurt.davis@inl.gov W (208)-526-8823 ORCiD: 0000-0003-3823-0728 www.inl.gov





# **Thank You**