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DOE Microreactor Program — 2023

Program Vision
Through cross-cutting research and development and
technology demonstration support, the Microreactor
Program will enable broad deployment of microreactor
technology by:
Achieving technological breakthroughs for key features of microreactors

Identifying and addressing technology solutions to improve the
economic viability and licensing readiness of microreactors.

Enabling successful demonstrations of multiple domestic commercial
microreactors.

Program Objectives

* Address critical cross-cutting R&D needs that require
unique laboratory/university capability or expertise

* Develop R&D infrastructure to support design,
demonstration, regulatory issue resolution, and M&S
code validation

* Develop advanced technologies that enable
improvements in microreactor viability
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Microreactor
Application

«Integrated Nuclear Testing
*Applied R&D

Demonstration Support
Capabilities
*Non-nuclear Testing
*Test-beds for developers/regulators

Technology Maturation

» Matures fundamental microreactor

enabling technologies and
capabilities

System Integration &
Analyses

«Identification of technology and

regulatory gaps for Microreactors
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Microreactor |&C Needs MACS task

J\

[ \
- Smaller size, factory assembled, need for more automated or autonomous operation to reduce O&M

costs without economies of scale

« Critical components such as pumps, heat exchangers and turbines may be located closer to the
core in a harsher environment with limited access

— Challenging to monitor or inspect, could benefit from advanced monitoring techniques

Y

— Harsher environment also more challenging for sensors Acoustics task

Heat Outlet

Shock-Absorbent Mount Heat Exchanger Shock-Absorbent Mount

Electrical Output

Microreactor Conventional reactor

https://inl.gov/trending-topic/microreactors/ https://www.energy.gov/ne/articles/nuclear-101-how-does-nuclear-reactor-work




Embedding Sensors in Hex Block for Heat Pipe-Based Microreactor

- Interest: Distributed temperature and strain — rr———
during non-nuclear testing of a hex block with |
electrical heating of a heat pipe

 Ultrasonic additive manufacturing (UAM)
process optimized for embedding fiber optics in
stainless steel components [1]

* Initially measured thermal strain but failed due to °
differential thermal expansion (would benefit
from higher temperature embedding process)

* More recently transitioned from monitoring static
strain to dynamic (acoustic) strain
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Current Scope: Fiber Optic Acoustic Sensors

Turbine acoustic sensors Reactor acoustic sensors 140
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schematic (right) of
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Acoustics: Can we leverage resonance from ambient
vibrations to monitor for structural changes?

Experiment

Acoustic

testing of
stressed
core-block

proxy

intact and
damaged

Methods

Remillieux, Ulrich
etal. (2015)
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Demonstration test matrix and
operational relevance b
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Machine learning predictions

of structural status

* 94% accuracy of component’s stress state

Actuual Joint Property
(Fraction of Examples)

* 100% detection of damage state
- 94% accuracy of interface roughness
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Microreactor Automated Control System (MACS)

. Objective: Leverage prior research outputs to
develop, test and implement a high fidelity and robust
microreactor automated control system (MACS) that

can perform with minimal need for human-in-the-loog FRTSR it A —
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Mathematlcs
. Hardware-In-The-Loop (HIL) simulator (MACS
Platform), including heat and simulated reactivity to

demonstrate capability
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MACS

e Preliminary set of requirements
defined in FY22

Reactor power control
Cooling medium

Power conversion unit
Surveillance and diagnostics

« MACS concept and design defined;
Implementation underway

Hardware control and DAQ using LabVIEW environment
dictated some of the interface requirements

Functional mockup interface (FMI) standard leveraged for
interoperability of surrogate models, control algorithms,
and DAQ

e FY24 Goals: Demonstrate automated
control under multiple operational
scenarios within the MACS Platform
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ASI Digital Twin and Advanced Controls::

SULATONVHICHSHONS HOW HISDNAGE
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- digital twin
- advanced control
e sensor interfacing strategies

*MACS provides a hardware-in-the-
loop configuration that is sufficiently
flexible to digitally and physically
mimic various microreactor
configurations and characteristics
(e.qg. different coolant, reactivity,
geometry, etc.).

Applying MACS platform to develop:
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MRP’s MARVEL Control Drum System Testing in
ASI Double Delta Structural Analysis System

Applied the ASI Double Delta to induce
deflections commensurate of the expected & i
MARVEL nuclear environment while
assessing rotational performance

Study resulted in a critical MARVEL
bearing design update

Update from binding sleeve
bearing to misalignment _r
accommodating spherical
bearing

Updated Housing Design
by Peter Ritchie

M R Microreactor
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Questions?

John Jackson
John.Jackson@inl.gov

https://gain.inl.gov/SitePages/MicroreactorProgram.aspx
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