

Office of **NUCLEAR ENERGY** 



Advanced Sensors and Instrumentation

# **Neutron Flux – INL**

Advanced Sensors and Instrumentation (ASI) Annual Program Webinar

October 30 – November 2, 2023

Nuclear Instrumentation Engineer: Kevin Tsai

Idaho National Laboratory

# Project Overview (Summary)

The goal of the INL neutron flux work package is to evaluate and develop in-core neutron flux sensors for <u>high-temperature</u> applications in support of upcoming advanced reactor demonstrations.

### Technology of focus:

- Self-powered neutron detectors (SPND)
  - Material compatibility with temperatures above 900 °C
  - Passively generate electric current in a radiation field
  - Only operates in current mode
- Fission chambers (FC)
  - Material combability with temperatures ~800 °C
  - Detection of fission events via ionization of fill gas
  - Operates in pulse mode, Campbelling mode, and current mode



SPND overview sketch



FC overview sketch

# Project Overview (Summary)

The irradiation test work package focuses R&D activities to demonstrate deployment of sensors in relevant reactor conditions prior to incorporating them in high value fuels and materials experiments.

### Capability of focus:

- Ohio State University Research Reactor (OSURR)
  - High temperature irradiation
  - 9.5" inner diameter dry-tube
  - 24" L  $\times$  2" inner diameter furnace









24" Furnace at OSU

9.5" Dry-tube experiment

# Project Overview (Schedule)

### FY 23 activities:

- (Ongoing) M3CT-24IN0702011 Performance benchmark of commercial fission chambers in elevated temperatures
  - (09/18/23 Irradiation) Performed at the OSURR
  - (11/31/23 Report Due) Report "Irradiation results of commercial and developmental fission chambers at high-temperatures"
- (Ongoing) M3CT-24IN0702012 Demonstration of temperature compensation techniques for SPNDs operating in high temperature environments
  - (12/04/23 Scheduled) To be performed at the OSURR
  - (01/31/24 Report Due) Report "Testing of temperature compensation techniques for SPNDs operating at high temperatures"
- (Ongoing) M3CT-24IN0703048 Complete second test at OSURR for high temperature characterization of neutron flux sensors
  - (11/15/23 Slides Due) Document "High-temperature testing of neutron flux sensors at OSURR"

# Project Overview (Participants)

Participants:

INL Kevin Tsai Michael Reichenberger Geran Call CEA Loïc Barbot Grégoire de Izarra

Marie Cuvelier Noor Ullah Tom Drury

TP

OSURR Andrew Kauffman Susan White Kevin Herminghuysen Matthew Van Zile



Heated experiment preparation

# **Technology Impact**

Applications of in-core (built-in assembly or traversing in-core) and ex-core (out-of-vessel) detectors neutron flux sensors: <u>controls</u>, <u>safety</u>, <u>or data acquisition</u>.

- BWR considered heterogeneous
  - large array of in-core neutron detectors
  - monitor reactor power and distribution and ensure power peaks are within technical specifications
  - fixed in-core power range detectors with redundancy and calibrated against a movable detector system
- PWR considered homogeneous
  - strategically placed ex-core detectors are sufficient
  - included in-core detectors for power distribution mapping, ex-core detector verification/calibration
  - improved reactor monitoring expand margin of operation

| PE Detector <sup>1</sup>  | Sensitivity | Max             |
|---------------------------|-------------|-----------------|
| Br <sub>3</sub> Detector- | (cps/nv)    | temperature (C) |
| WL-23274                  | 4.5         | 120             |
| WL-23069                  | 6.5         | 120             |
| WL-23058                  | 13          | 120             |
| WL-23057                  | 19          | 120             |
| WL-24427                  | 10          | 107             |
| WL-24425                  | 25          | 107             |

| - 1 | -  |    |    |    |   |   |
|-----|----|----|----|----|---|---|
|     | ٠N | Л  | E. | rı | 0 | r |
|     | 11 | /1 | ы  |    | U | н |
|     |    |    |    |    |   |   |

| P 10 Detector                | Sensitivity  | Max             |  |
|------------------------------|--------------|-----------------|--|
| B-10 Detector                | (cps/nv)     | temperature (C) |  |
| CPNB25 <sup>1</sup>          | 4            | 200             |  |
| CPNB28 <sup>2</sup>          | 5            | 200             |  |
| CPNB45 <sup>1</sup>          | 8            | 200             |  |
| CPNB48 <sup>1,2</sup>        | 10           | 200             |  |
| RS-C1B-1210-135 <sup>4</sup> | 3.6E-14 A/nv | 200             |  |
| RS-C2B-0808-1294             | 1.7E-14 A/nv | 200             |  |
| <sup>1</sup> Mirion          | - 19         |                 |  |

| 2 | <sup>2</sup> Photor | nis |
|---|---------------------|-----|
|   |                     |     |

<sup>3</sup>Framatome

<sup>4</sup>Reuter-Stokes Baker Hughes

| Sensit | tivity                                                                    | Max                                                                                                                 |
|--------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| cps/nv | A/nv                                                                      | temperature (C)                                                                                                     |
| 0.1    | 1E-14                                                                     | 250                                                                                                                 |
| 0.1    | 1E-14                                                                     | 250                                                                                                                 |
| 0.01   | 1E-15                                                                     | 250                                                                                                                 |
| 0.01   | 1E-15                                                                     | 400                                                                                                                 |
| 0.001  | 1E-16                                                                     | 600                                                                                                                 |
| 0.18   |                                                                           | 300                                                                                                                 |
| 2.1E-3 | - 59/                                                                     | 315                                                                                                                 |
|        | Sensit<br>cps/nv<br>0.1<br>0.1<br>0.01<br>0.01<br>0.001<br>0.18<br>2.1E-3 | Sensitivity   cps/nv A/nv   0.1 1E-14   0.1 1E-15   0.01 1E-15   0.01 1E-16   0.01 1E-16   0.01 1E-16   0.18 2.1E-3 |

<sup>1</sup>Photonis

<sup>2</sup>Mirion

<sup>3</sup>Reuter-Stokes Baker Hughes

# **Technology Impact**

This work evaluates commercial and developmental neutron flux sensors at high-temperature environments to support their adoption by advanced reactor developers.

### Examples:

- Natrium (TerraPower) more than 350 °C
- Xe-100 (X-Energy) 750 °C
- KP-FHR 650 °C
- eVinci (Westinghouse Nuclear) 650 °C
- BANR (BWX Technologies) target 1000 1400 °C
- MCFR/MCRE (SC/TP) 600 °C



"A Technology Roadmap for Generation IV Nuclear Energy Systems, U.S. DOE Nuclear Energy Research Advisory Committee and the Generation IV International Forum", GIF-002-00, 2002

| Overview of Generation IV Systems               |                     |                   |                          |                 |                                |
|-------------------------------------------------|---------------------|-------------------|--------------------------|-----------------|--------------------------------|
| System                                          | Neutron<br>spectrum | Coolant           | Outlet<br>Temperature °C | Fuel<br>cycle   | Size (MW <sub>e</sub> )        |
| VHTR<br>(Very-high-temperature<br>reactor)      | Thermal             | Helium            | 900-1000                 | Open            | 250-300                        |
| SFR<br>(Sodium-cooled fast reactor)             | Fast                | Sodium            | 500-550                  | Closed          | 50-150<br>300-1500<br>600-1500 |
| SCWR<br>(Supercritical-water-cooled<br>reactor) | Thermal/fast        | Water             | 510-625                  | Open/<br>closed | 300-700<br>1000-1500           |
| GFR<br>(Gas-cooled fast reactor)                | Fast                | Helium            | 850                      | Closed          | 1 200                          |
| LFR<br>(Lead-cooled fast reactor)               | Fast                | Lead              | 480-570                  | Closed          | 20-180<br>300-1200<br>600-1000 |
| <b>MSR</b><br>(Molten salt reactor)             | Thermal/fast        | Fluoride<br>salts | 700-800                  | Closed          | 1000                           |

https://www.gen-4.org/gif/jcms/c\_9353/systems

**OSURR** Heated Irradiation

- Increased experiment size to accommodate sensors
  - − Furnace ID: 1.25"  $\rightarrow$  2"
  - − Furnace Length:  $11" \rightarrow 24"$
  - Dry-tube: 6.5" → 9.5"









### Furnace Performance Testing

- Measure heating rates and temperature profiles on the larger furnace
- Improved temperature distribution with insulation testing



Insulated Temperature distribution





Initial temperature distribution results

Heat rate testing results

Irradiation Plan

- 3 days of irradiation
  - Days 1 and 2 are for testing sensor operability at relevant temperatures
  - Day 3 is to test sensor limits and identify failure points

| Power   | Duration          | Temperature   |  |  |
|---------|-------------------|---------------|--|--|
| 100 W   | 1 hr              | Ambient       |  |  |
| 100 W/  | 15 min each       | Ambient       |  |  |
| 1 kW/   | (+5 min per power |               |  |  |
| 10 kW/  | change)           |               |  |  |
| 100 kW/ |                   |               |  |  |
| 200 kW  |                   |               |  |  |
| 1 kW    | 1 hr              | Heat to 350 C |  |  |
| 1 kW/   | 15 min each       | 350 C         |  |  |
| 10 kW/  | (+5 min per power |               |  |  |
| 100 kW/ | change)           |               |  |  |
| 200 kW  |                   |               |  |  |
| 1 kW    | 1 hr              | Heat to 600 C |  |  |
| 1 kW/   | 15 min each       | 600 C         |  |  |
| 10 kW/  | (+5 min per power |               |  |  |
| 100 kW/ | change)           |               |  |  |
| 200 kW  |                   |               |  |  |

Day 1 Experiment

#### Day 2 Experiment

| Power   | Duration          | Temperature   |
|---------|-------------------|---------------|
| 100 W   | 1 hr              | Ambient       |
| 100 W/  | 15 min each       | Ambient       |
| 1 kW/   | (+5 min per power |               |
| 10 kW/  | change)           |               |
| 100 kW/ |                   |               |
| 200 kW  |                   |               |
| 1 kW    | 1 hr              | Heat to 650 C |
| 1 kW/   | 15 min each       | 650 C         |
| 10 kW/  | (+5 min per power | (C            |
| 100 kW/ | change)           |               |
| 200 kW  |                   |               |
| 1 kW    | 1 hr              | Heat to 700 C |
| 1 kW/   | 15 min each       | 700 C         |
| 10 kW/  | (+5 min per power |               |
| 100 kW/ | change)           |               |
| 200 kW  |                   |               |
|         |                   |               |

#### **Day 3 Experiment**

| Power   | Duration          | Temperature       |
|---------|-------------------|-------------------|
| 100 W   | 5 min each        | Ambient/          |
|         | (+5 min per       | 600 C/            |
|         | temperature       | 650 C/            |
|         | change)           | 700 C/            |
|         |                   | 750 C             |
| 100 W/  | 15 min each       | 750 C             |
| 1 kW/   | (+5 min per power |                   |
| 10 kW/  | change)           |                   |
| 100 kW/ |                   | and the second    |
| 200 kW/ |                   | 14                |
| 450 kW  |                   |                   |
| 1 kW    | 1 hr              | Heat to 850 C     |
| 1 kW/   | 15 min each       | 850 C             |
| 10 kW/  | (+5 min per power | OFALMBALM X       |
| 100 kW/ | change)           | 1/ 1/2/19/44/24/A |
| 1 kW    | 1 hr              | Heater off        |

**Fission Chamber Setup** 

- Electronics used with the I-TECH MONACO acquisition system
  - Pulse, Campbelling, and current mode simultaneously available
  - Counting curve availability
  - Built in oscilloscope for pulse shape analysis
- Fission Chamber tested:
  - 3mm U-235 fission chamber based on CFUR64
    - Rated 400°C
    - Specific CEA deposit: 1 µg U-235
    - Pulse mode specific tested FY 22 to 350°C
  - 7mm U-235 fission chambers based on CFUE43
    - Rated 600°C
    - Commercial deposit: 170 µg U-235
    - Campbelling mode specific



#### MONACO System





Schematic of 7mm El

Coaxial cable Sensitive length

INCO

### **Fission Chamber Results**

- 3mm U-235 fission chamber (FC-2349)
  - Noise reduction technique from FY-22 testing was still applicable
- 7mm high temperature fission chamber (HT-FC-1 and HT-FC-2)
  - Detector noise too large pulse mode operation not possible
  - Multiple attempts made to reduce noise
- Final conclusion improper detector cabling was used
  - 3mm fission chamber has the transmission cable and was able to reduce noise
  - 7mm chambers did not have the same cabling and was susceptible to noise from reactor controls





Thermocoax cable for 3mm FC

12

### **Fission Chamber Results**









Max temp 850C

### **Fission Chamber Results**



### 3mm Fission Chamber Failure Mode

- Failure of the gas-chamber seal
  - Occurs at 750 °C near power increase
  - Loss of fill-gas pressure
  - Decrease in count rate over time
  - Increase in average pulse width
  - Decrease in average pulse amplitude
- High voltage decrease from 250V to 150V



15

## **Concluding Remarks**

### **Overview of Activities**

Performed heated irradiation of commercial fission chambers at OSURR for temperature ranges of 600 – 850°C. This completes the experimental phase of two activities.

- Demonstrated the advantages of pulse mode operation informed potential fabrication improvements
- Identified drawback of current mode operation at temperature over saturation of signal from leakage currents
- (11/31/23 Report Due) Report "Irradiation results of commercial and developmental fission chambers at hightemperatures"
- (11/15/23 Slides Due) Document "High-temperature testing of neutron flux sensors at OSURR"

(Ongoing) M3CT-24IN0702012 – Demonstration of temperature compensation techniques for SPNDs operating in high temperature environments

 (01/31/24 Report Due) Report "Testing of temperature compensation techniques for SPNDs operating at high temperatures"

Kevin Tsai

Nuclear Instrumentation Engineer (INL) kevin.tsai@inl.gov W (208)-526-2828



Office of **NUCLEAR ENERGY** 



Advanced Sensors and Instrumentation

# **Thank You**

