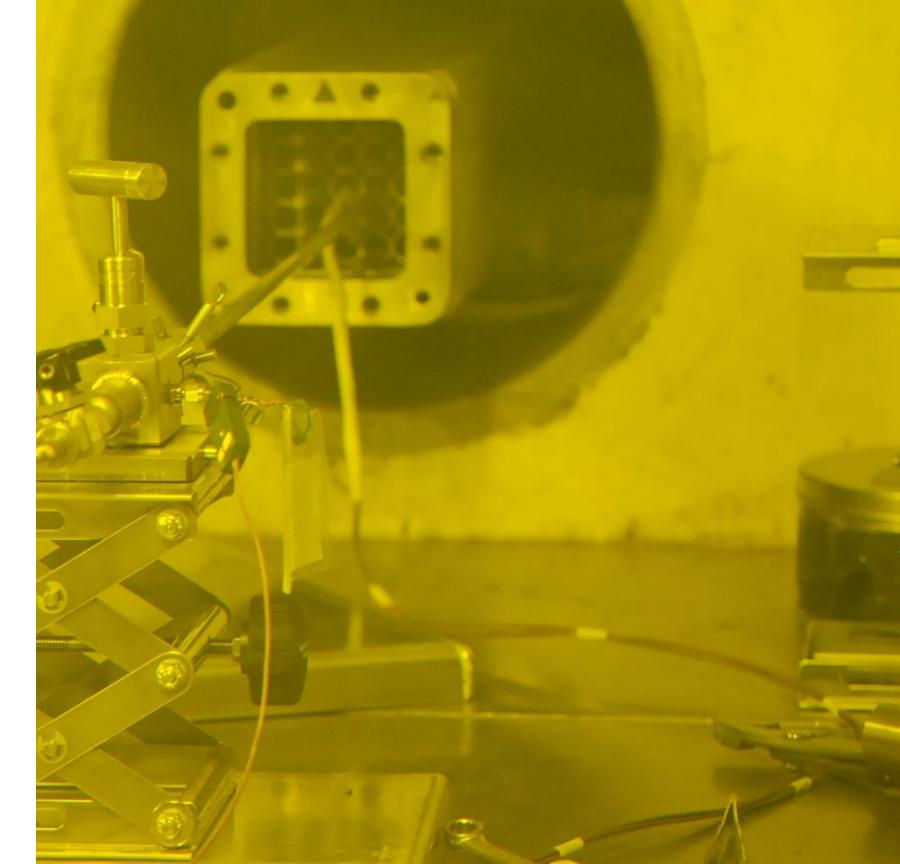


Nuclear Energy Research at the Pacific Northwest National Laboratory

Presented to Embedded Sensors for Advanced Reactor Systems Workshop August 27, 2024


Mark Nutt

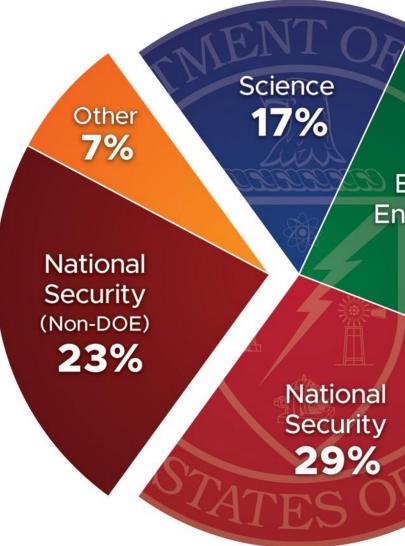
Nuclear Energy Program Development Manager

PNNL is operated by Battelle for the U.S. Department of Energy

PNNL-SA-197763

PNNL is one of DOE's most diversified national laboratories

6,088 Staff

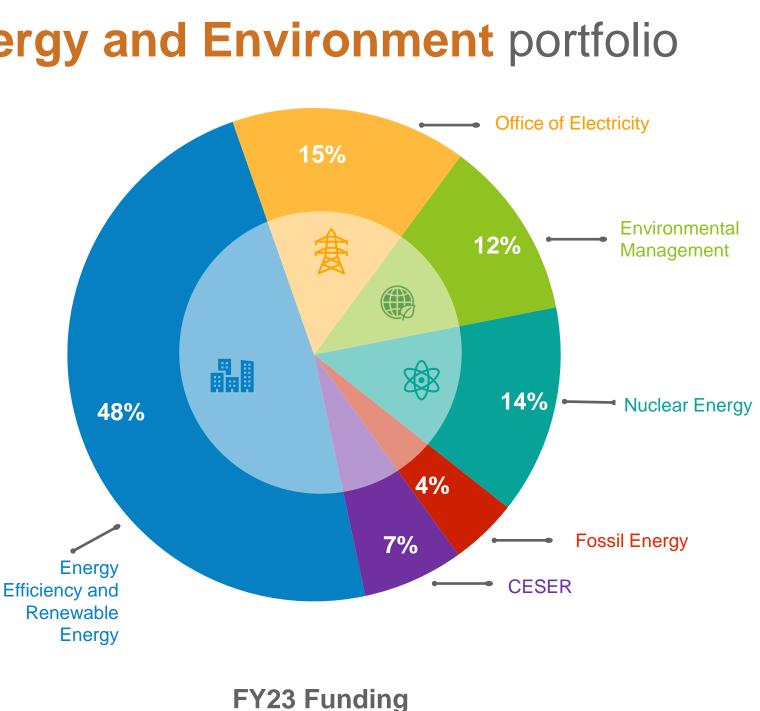


Peer-reviewed Publications

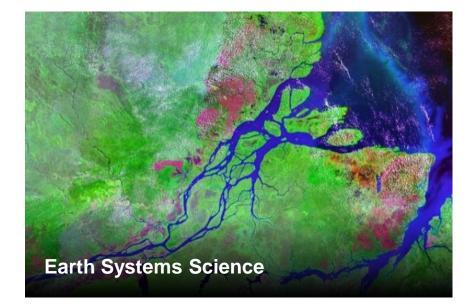
Invention Disclosures

FY 2023 Spending

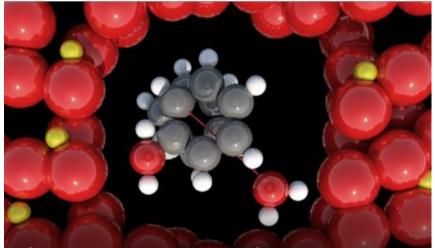
Energy & Environment 24%



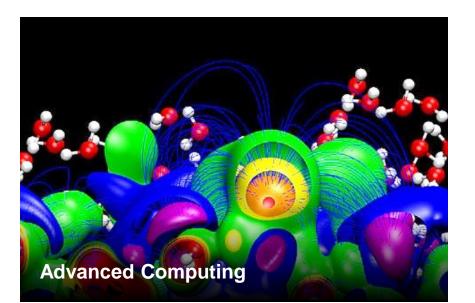
PNNL's diverse Energy and Environment portfolio

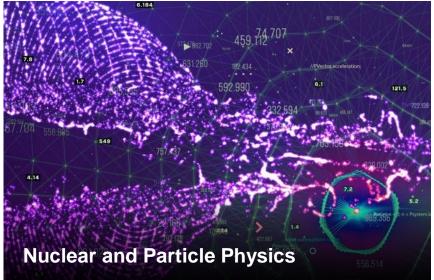

Mission Sponsors

- Energy Efficiency & Renewable Energy (EERE)
- Office of Electricity (OE)
- Nuclear Energy (NE)
- Nuclear Regulatory Commission (NRC)
- Environmental Management (EM)
- Fossil Energy & Carbon Management (FECM)
- ARPA-E
- Cybersecurity, Energy Security, and Emergency Response (CESER)
- Grid Deployment Office (GDO)
- Office of Clean Energy Demonstrations (OCED)
- State & Community Energy Programs
- Manufacturing & Energy Supply Chains



PNNL's **Science** mission advances understanding of the world around us





Chemical and Materials Sciences

PNNL's National Security mission is reducing the threat from weapons of mass effect

PNNL's Energy and Environment mission delivers innovations for our energy future

PNNL's nuclear energy expertise and capabilities are broad and diverse

Radiological **Materials**

 Wasteform Development Thermal Processing Process Engineering

Nuclear Chemistry & Engineering

- Separations
- Radiochemistry
- Irradiated Materials Char.
- Actinide Sciences

Experimental & Computational Engineering

- Multi-Phase Fluids
- Simulant Development
- Structural Analysis
- Safety Analysis

Neutron Metrology Radiation Effects on Materials

 Radiation Dosimetry & Measurement

Environmental Assessment & Engineering

- NEPA Assessments Human & Ecological
- Health
- Field & Systems Engineering
- Microbiology

Risk & Decision Sciences

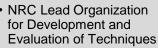
- **Risk Informed**

Subsurface Science & Technology

 Geochemical Assessment Remediation Science

- & Engineering
- Geophysics/ Geomechanics

Applied Materials & Manufacturing



Materials Development, Processing & Performance Testing

- Synthetic Chemistry
- Polymers

Non-Destructive Evaluation

- Finite Element and Semi-Analytical Simulations
- Prognostics & Health Management

Reactor Materials & Mechanical Design

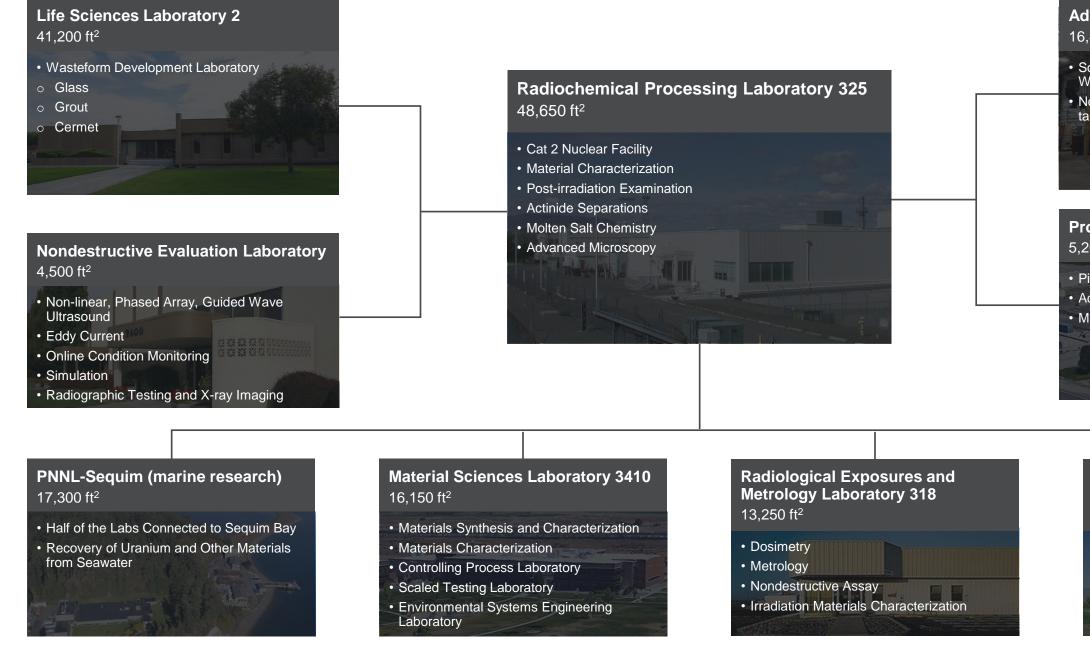
- Stress Corrosion Cracking
- Radiation Effects
- Materials Modeling
- Nano Materials Science

 Nuclear Safety & Engineering **Decision Analysis** Software Based

Decision Support Tools

Nuclear Engineering & Analysis

- Core Design
- Criticality Safety Assessment
- Radiation Shielding Analysis
- Fuels and Materials Performance Analysis



PNNL's Nuclear Research Corridor Capabilities are modern, comprehensive, and unique

PNNL's Nuclear Research Corridor Capabilities are *modern*, *comprehensive*, and *unique*

Advanced Engineering Laboratory 16,800 ft²

 Solid Phase Processing: ShAPE, Friction Stir Welding, Cold Spray

 Nondestructive examination of Hanford Site tank bottoms and sidewalls

Process Development Laboratory W 5,200 ft²

Pilot-scale High-Bay

Advanced Melter Platform

Multiphase Fluids & Scaled Test Platforms

Ultra-Low Background & Radiation Detection Laboratory 3420 20,500 ft²

- 42.5 feet of Overburden
- Low-background Detector Systems
- Ultra-sensitive Measurements Laboratory
- Assembly Laboratory

Our Sponsors

University Partners for Early-Stage Applied R&D and Workforce Development

Through the DOE Nuclear Energy University Program (NEUP) and DOE Science Undergraduate Laboratory Internships (SULI)

University of Nevada, Reno

Inspiring Excellence Since 1874

Irradiated Material Characterization

. . .

- **Our Work:** Post-irradiation examination on nuclear materials such as high-burnup fuel rods, test materials, and reactor components to quantify performance properties
- Future Impact: Establish the technical bases for the extended storage and subsequent transportation of high burnup spent nuclear fuel

Fuel Performance

assembly thimble plug

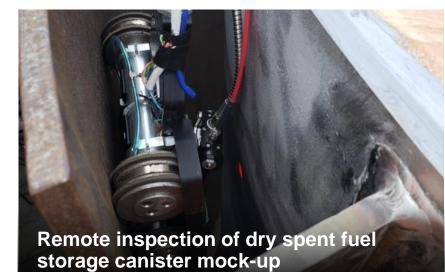
- Our Work: Developer of the Fuel Analysis under Steady-state and Transients (FAST), the NRC's computer code that is used to analyze nuclear fuel performance (including metallic and TRISO fuel)
- Future Impact: Modern code for analyzing reactor fuel performance during reactor operations and under dry storage conditions

- in extreme environments

Advanced Materials and Fuels

Our Work: Developing advanced nuclear materials and fuels for fission and fusion applications, their manufacturing processes, and components that safely operate long-term

Future Impact: Establishing the foundation for industry implementation of high-performance materials and energy efficient/lower-cost manufacturing processes for production; developing durable, longer-life materials and more efficient repair processes



Non-Destructive Evaluation

Examination of reactor piping in the **Advanced Ultrasonics Laboratory**

- Our Work: 50+ years of advancing • NDE techniques to detect flaws, cracks, or other defects
- Future Impact: Techniques and methods for the in-service inspection of reactor components

Remote Inspection

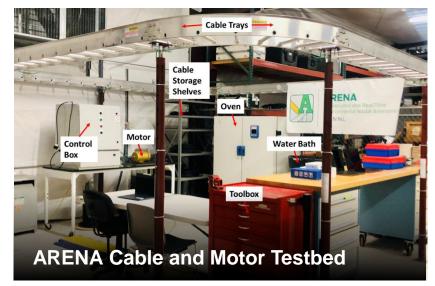
- Our Work: Tools and techniques for the remote non-destructive evaluation of dry storage canisters
- Future Impact: In-situ inspection of independent spent fuel storage installations

Solid Phase Processing

- & Extrusion (ShAPE)

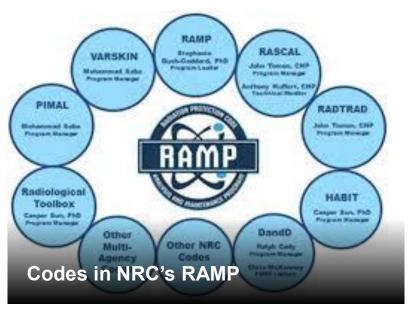
Our Work: Developing tools and techniques – friction stir welding, cold spray, and Shear Assisted Processing Future Impact: Improved materials and processing for improved performance in nuclear systems

Stress Corrosion Cracking

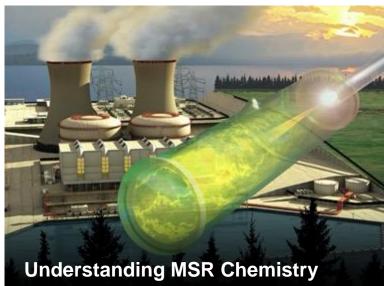

- **Our Work:** Understanding the conditions that initiate stress corrosion cracks, when cracks initiate, and how fast cracks grow in aqueous and atmospheric environments
- **Future Impact:** Experimental results and data support license renewals and aging management programs (reactors and spent fuel storage facilities)

On-Line Monitoring

- Our Work: Developing micro-fluidics, advanced sensors, Raman/UV-vis microscale monitoring, chemometric (AI/ML) modeling for on-line monitoring
- Future Impact: Real-time understanding of fluid and gas compositions for process control in advanced reactors and recycling facilities


Cable Aging and Degradation

• Our Work: Understanding the conditions that lead to degradation, failure modes, degradation rates, and in-service inspection techniques • Future Impact: Results used for subsequent license renewals and establishing cable aging management programs for our existing fleet of reactors and for advanced reactors



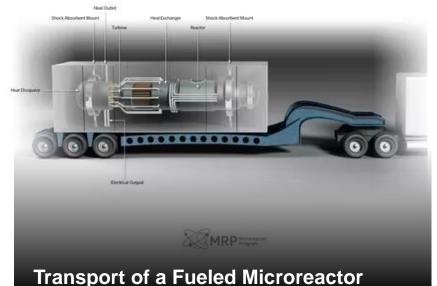
Radiation Protection

- Our Work: Consolidating codes in the NRC's Radiation Protection Computer Code Analysis and Maintenance Program (RAMP); Updating RASCAL Emergency Response Tool; Updating the **RADTRAN** spent fuel transportation risk assessment code
- Future Impact: Modern codes to support new reactor deployments

Molten Salt Chemistry

- Our Work: Establishing and utilizing capabilities to improve understanding of molten salt under reactor conditions, as well as actinides and radionuclides behavior
- Future Impact: Support the demonstration and deployment of molten salt reactors

Techno-Economic Assessment of New Reactor Deployment



- scale

 Our Work: Assessed how new small modular reactors (SMR) could satisfy the Pacific Northwest's dynamic electricity demand and explored the viability of deployment in Washington • Future Impact: Demonstrate economic viability of nuclear energy on a regional

Micro-Reactor Transportation

- Accomplishment: Framework for offsite transportation PRA; investigated the uncertainty associated with radionuclide releases for TRISO-fueled transportable microreactor transportation PRA
- Future Impact: Safe and secure ٠ transportation, management, and disposition of advanced microreactor technologies

Advanced Reactor Safeguards

- Accomplishment: Investigated how experience gained from the IAEA safeguards domain could benefit U.S. domestic material control and accountability (MC&A) for advanced reactors
- Future Impact: Prepare U.S. vendors to compete internationally in markets where IAEA safeguards are required

Cyber Security

- infrastructure

Accomplishment: Understanding, evaluating, and developing trusted and resilient systems for critical

Future Impact: Address pressing cyber security challenges in cyberphysical systems, industrial control systems, and critical infrastructures within the energy generation sector

Nuclear Generated Hydrogen

- Accomplishment: Advancing solid oxide fuel cell and hydrogen carriers technologies that can be integrated with nuclear generation stations; technoeconomic and risk assessment
- **Future Impact:** Support the improved integration of nuclear energy into the 21st century energy generation system

Nuclear's Role in CO₂ Reduction

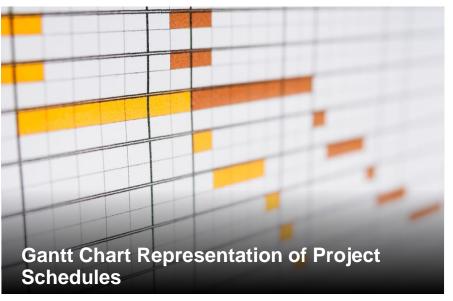
- Our Work: Investigating nuclear energy's contribution and future role to mitigate CO_2 emission
- Future Impact: Inform policy and decision makers on the role of nuclear energy in the 21st century energy generation system

Probabilistic Risk Assessment

Our Work: Advancing state-of-the-art probabilistic risk assessment for both existing and next-generation advanced reactors.

Future Impact: PRA resource for the NRC's Office of Nuclear Reactor Regulation and Office of Nuclear **Regulatory Research**

Energy Facility and Infrastructure Siting


- **Our Work:** Interdisciplinary scientific analysis; technological and institutional innovation; and skillful integration of public stakeholders, science, and policy for siting energy facilities.
- Future Impact: Support the siting of facilities to meet deep decarbonization goals

Environmental Reviews

- Our Work: Multi-disciplinary environmental assessment capabilities are applied to a range of nuclear projects (NRC Early Site Permit for the Clinch River TN site, NRC Advanced Reactor Generic EIS, License Renewal GEIS, NRIC Plant Parameter Envelope)
- Future Impact: Streamlined environmental reviews for license renewals and new reactor deployment (under two years)

Integrated Schedule and Cost Risk Analysis

- mitigate risks
- risk analysis

Our Work: Implemented cost and schedule risk analyses for dozens of projects over 15+years; helping high-visibility projects comply with DOE O 413.b, identify and prioritize risks, objectively estimate contingency requirements, and

Future Impact: Bringing to bear advanced tools, data science, and big data approaches

Environmental Justice

Fuel Fabrication Capability Assessment

- **Our Work:** Strengthening environmental justice policies and community engagement practices for federal agencies through social science and environmental assessments
- **Future Impact:** Establishing a 21st century that combats CO2 emissions while being equitable and just for all communities
- **Our Work:** Leveraged industry insights of fuel fabrication capabilities needed for current nuclear power plants plus advanced reactors; evaluated the benefit of a Center for Advanced Reactor Fuel Fabrication.
- Future Impact: Support industry deployment of advanced fuels

- licensing.

Human Factors


Advancing fundamental knowledge at the intersection of people, technology, and work environments

Our Work: Human reliability analysis and probabilistic risk assessment modeling that supports the NRC in nuclear reactor research and

Future Impact: Better understanding of the human-machine interface for improved safety and reliability

Drones for Low-Level Radiation Detection

Aurelia X6 UAV used in a Proof of Concept **Project on Low-Level Radiation Detection**

- **Our Work:** Demonstrated that unoccupied aerial vehicles equipped with radiological detection systems are feasible to perform the needed surveys to meet release criteria for a final status survey.
- Future Impact: UAVs have the potential • to reduce time, cost, and safety risks to humans during decommissioning and other surveys

Spent Nuclear Fuel Degradation

Spent Nuclear Fuel Transportation Testing

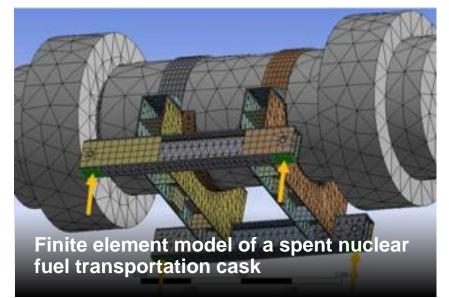
- **Our Work:** Developing advanced microscopy tools for understanding the degradation of uranium dioxide spent fuel in geologic environments (chemical and radiological)
- Future Impact: Improved models for the long-term safety assessment of the geologic disposal of spent nuclear fuel

transportation cask

- transportation
- nuclear fuel

Accomplishment: Partnered in the multi-modal spent nuclear fuel transportation test with results showing forces acting on fuel rods are small under normal conditions of

Future Impact: Data for the safety case for transporting high burnup spent



Northwest

Pacific


Advancing sustainable clean nuclear energy

Structural Analysis of Spent Nuclear Fuel Storage and Transportation Casks

- Our Work: Structural analysis of • transportation casks under normal operations and of storage casks during seismic events
- Future Impact: Demonstrated the • safety of transporting high burnup spent nuclear fuel and of storage casks • during earthquakes

Storage and Transportation Cask Thermal Analysis

- **Our Work:** Developing and benchmarking the COBRA-SFS code/templates and incorporated into UNF-STANDARDS; analyzed storage and transportation cask configurations using COBRA-SFS and STAR-CCM+
- Future Impact: Improved methods and techniques for the thermal analysis of storage and transportation canisters and casks

Reactor Site Infrastructure Evaluations

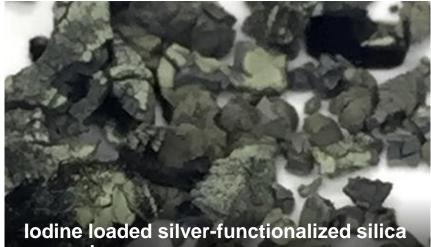
- - reactor sites

Accomplishment: Conducting reactor site surveys to understand the existing

infrastructure for transporting spent nuclear fuel (19 completed to date)

Future Impact: Planning for transporting spent nuclear fuel from commercial nuclear

Spent Fuel Recycling


- **Our Work:** Demonstrated CoDecon flowsheet testing for recycling without separating pure Pu using on-line monitoring; investigating advanced extractant for recycling HALEU; advancing approaches for TRISO recycling
- Future Impact: Proliferation resistant • recycling with real-time process control

Waste Form Development

- Our Work: Advancing technologies to immobilize waste streams into durable waste forms and the understanding of how they will perform in disposal environments.
- Future Impact: Treatment of nondisposable spent fuel forms and future recycling processes

lodine Capture and Immobilization

- aerogel
- iodine
- recycling

Our Work: Advancing waste forms for the capture and immobilization of

Future Impact: Durable waste forms for the permanent disposal of iodine released during spent nuclear fuel

Metal Organic Frameworks

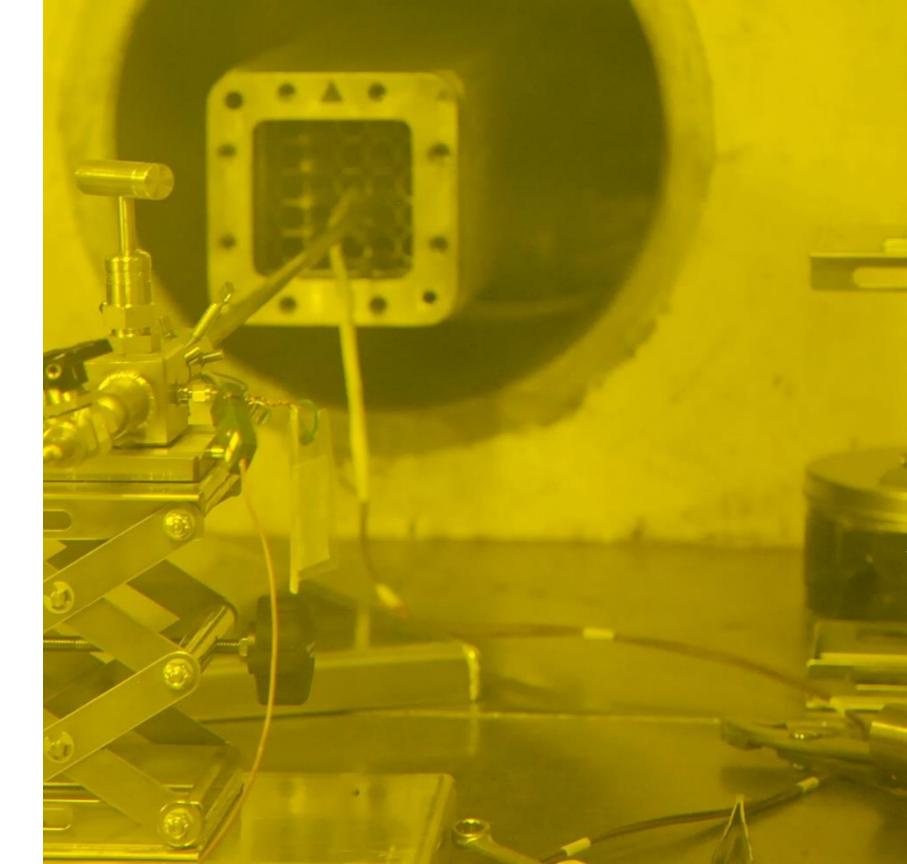
- **Our Work:** Developing metal organic frameworks (MOFs) for capturing noble radioactive off-gases (Kr, Xe); partnering with industry to advance technology for industrial applications
- Future Impact: Efficient and smaller offgas capture systems that can be used on advanced nuclear reactors or at recycling facilities

Uranium Recovery from Seawater

Uranium recovery from seawater at the Marine and Coastal Research Lab

- Our Work: Demonstrated the recovery of uranium from seawater using acrylic fibers
- Future Impact: Provide commercially attractive nuclear fuel derived from the oceans — the largest source of uranium on earth

Materials Research to Support **Reactor Permit Extensions**


- reactor fleet

Our Work: Use high-dose irradiators in the Radiological Exposures & Metrology Lab to understand the behavior of aged cables in existing nuclear power plants Future Impact: Provide radiation effects testing on critical electrical and structural reactor materials to simulate end-of-life-dose, which supports permit extension of the current light water

Questions & Discussion

Learn more at www.pnnl.gov

