

Office of **NUCLEAR ENERGY**

Advanced Sensors and Instrumentation

Optical Fiber - ORNL

Advanced Sensors and Instrumentation (ASI) Annual Program Webinar November 4, 6-7, 2024

Chris Petrie, Group Leader, Pl Oak Ridge National Laboratory

Many thanks to the people that made this work happen!

Bryan Conry

Yan-Ru Lin

Matt Kurley

Chad Parish

Sabrina Calzada

Eddie Lopez

Honorato

Dan Sweeney

Potential nuclear applications of optical fibers

Sheath

Dense

gamma-

absorbing tube

Fiber optics embedded in 3D printed stainless steel (left) or SiC (right) for local strain or vibration monitoring [1, 2]

[5, 6] [1] H.C. Hyer et al., Additive Manufacturing, 52 (2022), 102681 [2] C.M. Petrie et al., Journal of Nuclear Materials 552 (2021) 153012. [3] D.C. Sweeney et al., "Analog Front End Digitizer using Optical Pulse-Width Modulation for Nuclear Applications," IEEE Trans. Instrum. Meas. (under review) [4] A. Birri and T.E. Blue, Progress in Nuclear Energy 130 (2020) 103552.

Rad-hard Front End Digitizer (FREND) to transmit conventional sensor data through reactor containment over fiber optic cables to reduce noise in cabling [3]

Local temperature measurements in an experiment simulating gas-cooled reactor core outlet mixing [7]

[5] D.C. Sweeney, A.M. Schrell, and C.M. Petrie, IEEE Trans. Instrum. Meas. 70 (2021) 1-10. [6] C.M. Petrie, D.C. Sweeney, and Y. Liu, US Non-Provisional Patent No. US 2021/0033479 A1, Application No. 16/865,475, published February 4, 2021. [7] H.C. Heyer, D.R. Giuliano, and C.M. Petrie, Appl. Therm. Eng. 230 (2023) 120847.

Gas gap

3

Embedded fiber optic sensor for

measuring pressure,

corrosion, or

acoustic emissions

How do optical fibers work? What happens under irradiation?

What problems are we trying to solve?

It takes a long time to understand the results from complex HFIR or ATR irradiation experiments

Hypothesis: Coating decomposition + radiation-induced compaction resulted in significant compressive strain on the fiber

Coatings are necessary to protect the fiber during handling

Polyimide/acrylate coating

Common assumption: Polymeric coatings are too weak to affect the fiber or they burn off

Polyimide and acrylate coatings thermally decompose in air at temperatures of $\sim 400^{\circ}$ C or below and turn matte-black

8

10

Under inert conditions, both coatings form glassy carbon (GC)...

...and remain well-adhered to the fiber

14

Models predict that glassy carbon compaction can induce strains that generally match WIRE-21 fiber optic shift data

Let's just remove the coating! ... Doesn't entirely solve the problem

C.M. Petrie and D.C. Sweeney, "Enhanced backscatter and unsaturated blue wavelength shifts in F-doped fused silica optical fibers exposed to extreme neutron radiation damage", J. Non-Cryst. Solids **615** (2023) 122441 doi.org/10.1016/j.jnoncrysol.2023.122441

What problems are we trying to solve?

17

Radiation-induced compaction in fused silica is more complicated than we realized: The models do not capture all the physics

Raman: Irradiation changes ring structures and Si-O-Si angles

https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Spectroscopy/Vibrational_Spectroscopy/Vibrational_Modes/Number_of_Vibrational_Modes_in_a_Molecule

Same sample, different area (heterogenous): Nanocrystalline Si

Incomplete story, needs more detailed analysis of Raman & XRD spectra

What problems are we trying to solve?

What about sapphire? Will that solve our problems and allow operation at even higher temperatures?

Fuel rod images adapted from <u>http://jolisfukyu.tokai-sc.jaea.go.jp/fukyu/mirai-</u>en/2010/img/honbun/6-4.jpg

C.M. Petrie et al., "Optical transmission and dimensional stability of single-crystal sapphire after high-dose neutron irradiation at various temperatures up to 688°C," *Journal of Nuclear Materials* **559** (2022) 153432.

Hypothesis: Rayleigh scattering from radiation-induced voids caused excessive attenuation at high dose and high temperature

C. Kinoshita and S.J. Zinkle, "Potential and limitations of ceramics in terms of structural and electrical integrity in fusion environments," *Journal of Nuclear Materials* **233–237** (1996) 100–110.

We found voids! But it turns out they can't explain the attenuation...

24

We were wrong, but only because we picked the wrong microstructural feature (dislocation loops)!

Summary and conclusions

