

Office of **NUCLEAR ENERGY**

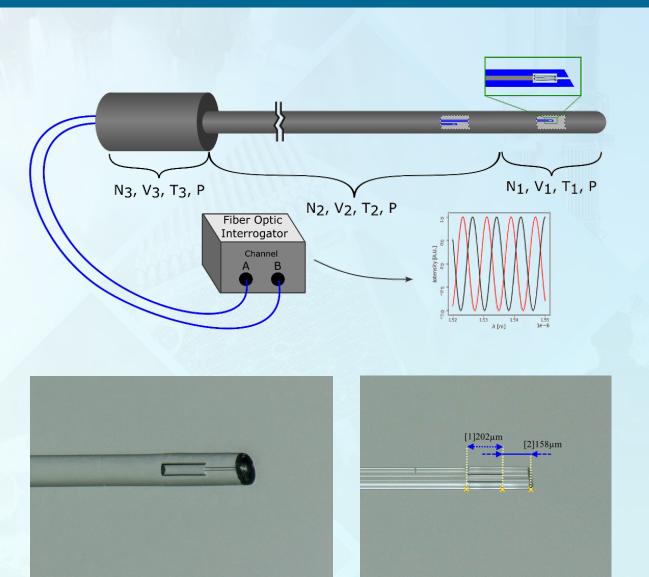
Advanced Sensors and Instrumentation

Optical Fibers

Advanced Sensors and Instrumentation (ASI) Annual Program Webinar November 4, 6-7, 2024

Pl's: Austin Fleming, PhD & Charles Payne

Idaho National Laboratory


Project Overview

Activities

- Radiation Resistance Fiber Optic Temperature Sensor
- In-pile Imaging in the Big Buster Platform
- In-pile test of imaging system in NCSU Reactor
- In-pile Benchmark test of fiber Optic Pressure Sensor

Radiation Resistance Temperature Sensor

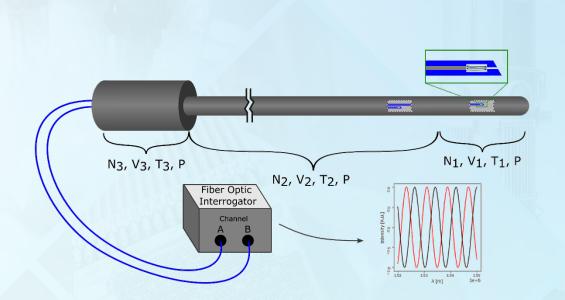
- Sensor consists of an open Fabry-Perot cavity allowing gas to flow in and out of cavity
- Sensor is sealed into a capillary with reference volume at constant temperature (noted by V₃)
- Functioning methodology
 - As the location of cavity is heated (Volume 1), the gas density decreases locally, in accordance with ideal gas law
 - Index of refraction changes with gas density in the cavity
 - The interference spectrum from cavity changes with index of refraction

Radiation Resistance Temperature Sensor (Theory Overview)

Index of refraction of gas located at cavity

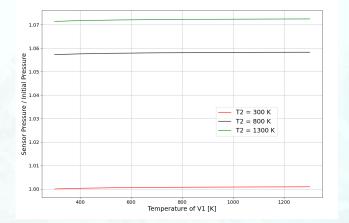
 $n = \sqrt{\frac{4\pi N_A \alpha}{\left(\frac{V_1}{T_1} + \frac{V_2}{T_2} + \frac{V_3}{T_3}\right)} \frac{P_i V_T}{R T_1 T_i}} + 1$

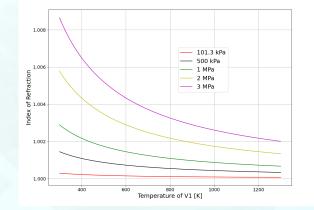
Fabry-Perot Interference spectrum

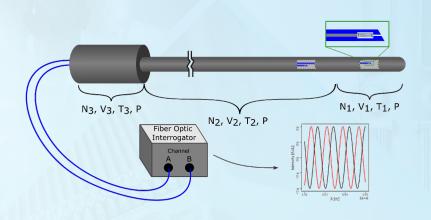

 $I = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos\left(\frac{4\pi nL}{\lambda}\right)$

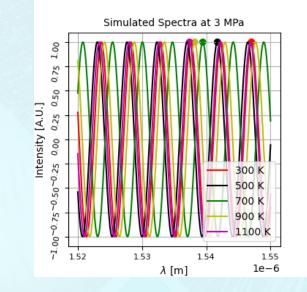
Peak wavelength in interference spectrum

$$\lambda_p = \frac{2L_0}{m} \left(1 + \alpha_{ex} (T_1 - T_i) \right) \sqrt{\frac{4\pi N_A \alpha}{\left(\frac{V_1}{T_1} + \frac{V_2}{T_2} + \frac{V_3}{T_3}\right)} \frac{P_i V_T}{R T_1 T_i}} + 1$$

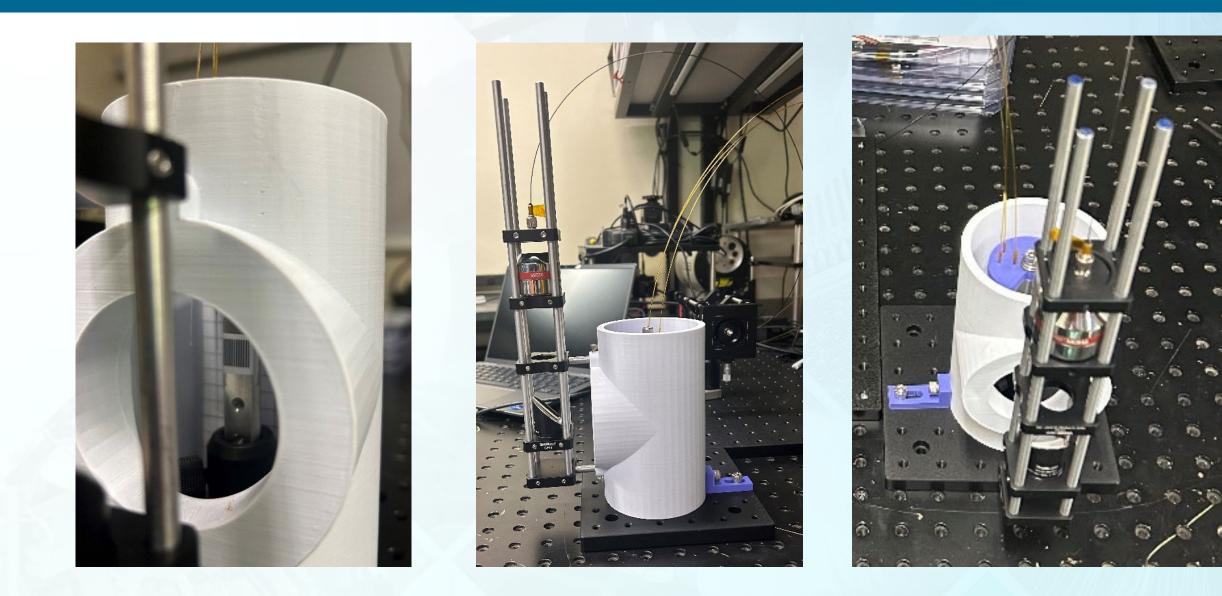

If ignoring thermal expansion and solving for T₁


$$T_{1} = \left[\frac{4\pi N_{A}\alpha P_{i}(V_{1} + V_{2} + V_{3})}{RT_{i}\left(\left(\frac{\lambda_{p}m}{2L_{0}}\right)^{2} - 1\right)} - V_{1}\right]\frac{1}{\left(\frac{V_{2}}{T_{2}} + \frac{V_{3}}{T_{3}}\right)}$$



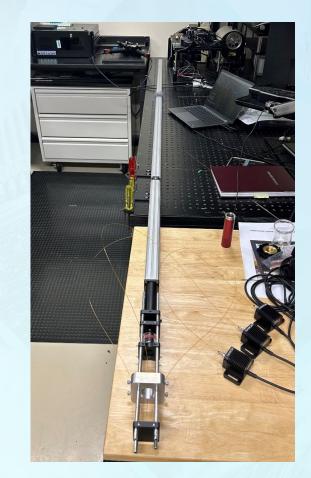

Radiation Resistance Temperature Sensor Modelling Results

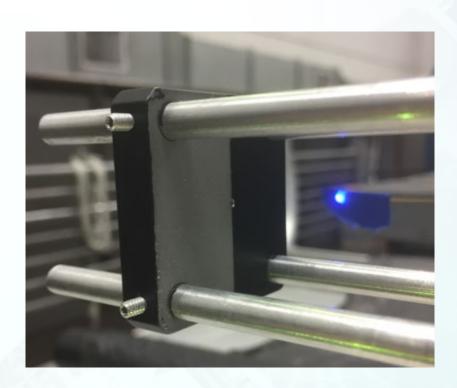
- Modelling the sensor packaged in a stainless steel capillary tubing with 1.5 mm (0.062") OD. A reference volume of 1.5 cm X 4 cm. (0.6" X1.6")
 - Very little pressurization due to temperature change in the capillary region due to "large" reference volume
 - Even relatively insensitive to all of volume 2 increasing temperature
- Sensitivity is largely "tuned" by changing the gas composition or initial pressurization
 - Higher pressure is required for maintaining sensitivity at elevated temperatures
- Simulated spectrum demonstrates sensitivity and peak tracking challenges

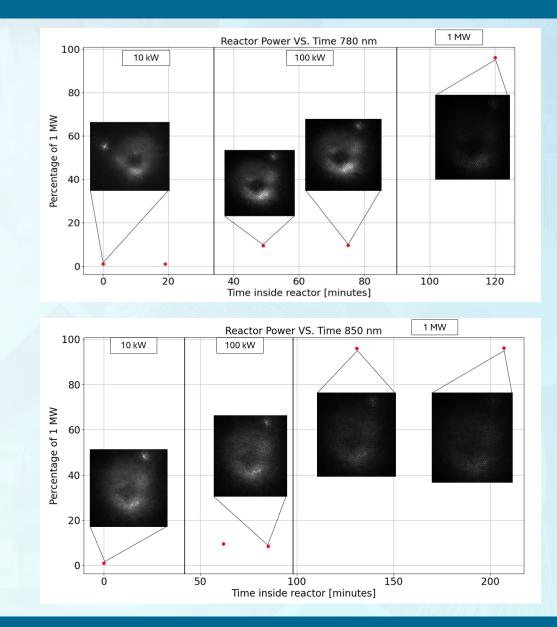


- The Transient Reactor Test Facility (TREAT), conducted irradiation experiments that are most likely to benefit from in-pile imaging.
 - Large irradiation position
 - Destructive Testing
 - Low Neutron Fluence (although high flux) testing
- Big Buster The primary vessel used for irradiation experiments in the TREAT reactor
 - Establishing a demonstration capability
- Challenges have been identified from previous laboratory and irradiation testing
 - Radiation Induced Emission
 - Cherenkov and radioluminescence
 - Need to illuminate within a spectral range
 - Radiation Induced Attenuation
 - Need to utilize near infrared
 - Radiation induced Index of Refraction Change
 - Focal length of lenses changing
 - Reflective optics




- LOCA testing of fuel pins is a likely candidate for in-pile imaging
 - Ballooning Behavior
 - Rupture, Fuel Fragmentation Relocation and Dispersal
- Image was collected from the edge of "rod" with a grid in the background
- Some different iterations were tried with focusing point, and field of view.
 - Depending on the specific objective of an experiment this can be optimized
 - Flat mirror vs off-axis parabolic
 - Distance from reflective objective.




In-pile Imaging in NCSU Reactor

In-pile Imaging in NCSU Reactor

Pressure sensor

- The INL Developed pressure sensor was incorporated into an AFC experiment, but was
 unfortunately damaged during the fueling of the experiment. As a result the milestone has been
 delayed.
- The sensor is incorporated into the next experiment in the series which is *currently* planned to be irradiated end of January.

Concluding Remarks

- In-pile imaging has been significantly matured, some challenges still remain but we believe technical feasibility has been demonstrated. Optimization and improvements have been identified but are currently not funded.
- Radiation Resistant Temperature Sensor INL applied for preliminary patent. Currently not funded through ASI, but may submit a TCF proposal. More testing is warranted and needs to be completed to fully evaluate the sensor potential (and limitations).

FY2025 Future work

- Pressure sensor design revision
 - Reduce drift, improve manufacturability, ruggedized design
- High Speed, High temperature, Radiation Resistant Fiber Optic Pyrometry
 - Build on ~6 year of experience deploying fiber optic pyrometry in irradiation experiments
 - Previously used system is spectrometer-based data collection with custom multi-spectral data reduction to minimize radiation effects.
 - Main current limitations the current system are slow speed at low temperatures (requires long exposure time)
 - New system will utilize photodiode-based system but attempt to maintain as much spectral information as possible to maintain a similar data reduction algorithm to what is currently used.

Office of **NUCLEAR ENERGY**

Thank You

Austin Fleming

Austin.fleming@inl.gov