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Project Overview

« Fiber optic technology has many sensing advantages, but few applications in nuclear
environments.

» Fiber optic sensors have unique challenges associated with in-pile applications
* Radiation Induced Attenuation
* Radiation Induced Emission
» Radiation Induced Compaction
* These can result in a loss of signal or significant drift in many conventional fiber optic sensor designs
« The direct funded fiber optic activities under NEET-ASI focused on relatively high TRL items with
the potential for high impact to the nuclear industry. These include the development and
qualification of:
» Fiber optic based pressure sensor
« Distributed in-pile temperature sensing
* In-pile imaging
» Active Compensation/Drift correction for intrinsic temperature sensing
« An overview of these 4 activities will be given here



Project Overview (Intrinsic Temperature Sensor)

« Distributed temperature sensing using Rayleigh scattering (Optical Frequency Domain
Reflectometry)
— Commercially available systems
— Unique considerations are required for in-pile work

« Much longer lead in lengths compared to other applications (often ~20-30m of fiber length with
the only the last 1-2m providing data of interest.

« Multiple feed throughs, often multiple connections required.
« Unique considerations for fiber selection (minimize radiation effects)

« High temperature operations
— Often bare fibers (coating is removed) are used for high temperature, but this makes fiber fragile
— Sensor incorporation often requires robust sensors for experiment assembly (preferably with coating)




Project Overview (Active Compensation)

« Like radiation, temperature also alters the refractive index (RI) and length of fiber optic

« As a proof-of-concept, we experimentally demonstrate real-time monitoring of
temperature effects on the Rl and length and measure thermal expansion coefficient
(TOE) and thermo-optic coefficient (TOC) using the cascaded Fabry-Perot.

«  Temperature is increased from 21 to 486° C and data is monitored by optical
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Project Overview (Active Compensation)

* The active compensation “sensor” has been deployed in MITR
— Sensor shown at right and initial data from irradiation
« Scheduled to be irradiated in BR2 in collaboration with our French
counterparts with CEA

— CEA has been working on a similar setup with free space optics which is being
tested as part of the experiment

« Data analysis from irradiation is ongoing, report to come out shortly.
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Project Overview (Pressure Sensor)

« Motivation: Pressure is an extremely important parameter for thermodynamic and structural
considerations

* Heat Transfer
 Phase Change
« Structural Integrity (cladding/primary containment)
« Coolant Flow (measurement/control)
« Background: Fiber Optic Fabry Perot Pressure Sensors
« Widely documented in literature
« Limited commercial availability
« Based on light interference spectrum
« Small Footprint
« Relatively High Temperature
« Customizable Pressure Range
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Project Overview (Pressure Sensor)

« Several design improvements have been
made to increase reliability and sensor
fabrication yield

« Designed, assembled, and integrated a “high-
speed” data acquisition system for
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Project Overview (In-pile imaging)

* Motivation:
— Quantitative and qualitative information about in-pile conditions, properties or state
— Diagnostics or control of systems
* Image bundles are commercially available “off-the-shelf” with up t0100,000 fibers, the fiber
bundle used in this demonstration had 10,000 fibers
* Fiber bundles have the potential to be compatible with various experiments, as their
feedthroughs and footprints are similar to those of other sensor types
— Diameter 0.5 mm -2 mm
— Would not require facility modifications

Plastic Coating

Silica Jacket

Cross Section Structure




Project Overview (In-pile imaging)

Separation=6.357um Separation=11.714um

« Unique challenges for nuclear environments:

- RIA

— RIE (Cherenkov and Radioluminescence)

— Long lead lengths (connections)

— Index of refraction changes
(lenses and fibers)

— Fiber acceptance angle (NA) and
challenges with designing lens
systems with high magnification
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Technology Impact

» Fiber optic sensors presented here are now routinely used in irradiation experiments to meet
data objectives

« Some advanced reactor companies are planning to use fiber optic sensors as part of reactor
monitoring & control
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Fiber optic sensors in all these irradiation experiments were included to meet experiment data objectives
This was made possible by the ASI program
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Concluding Remarks

« Broad set of fiber optic technologies for nuclear applications is being matured through the ASI
program

« Significant progress has been made in the development and deployment of fiber optic sensor in
irradiation environments (significant experience on fabrication, packaging, and installation that is
unique to nuclear applications)

* Fiber optic sensors have a very exciting future for nuclear applications
Scratched the surface of their potential

« FY23 Significant work scope and limited personnel bandwidth
Recently hired Charles Payne (Start date December 4)

Austin Fleming

austin.fleming@inl.gov
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