

Office of **NUCLEAR ENERGY**

Advanced Sensors and Instrumentation

Optical Sensors for Impurity Measurement in Liquid Metal-cooled Fast Reactors

Advanced Sensors and Instrumentation (ASI) Annual Program Webinar November 4, 6-7, 2024

PI: Milos Burger, Associate Research Scientist University of Michigan

Project Overview – Coolant impurity detection at METL

Current technology: Plugging meter at ANL ۲ Alternative technology: Laser-based spectroscopy Progress report – FY2024 Plans – FY2025 Umbilical (Optical Fiber) Getter Na Pump Optical Probe LIBS Module METL **Test Vessel**

Plugging meter at METL

Limitations:

- Non-discriminant measurement technique
- Min ~1h to obtain a measurement result
- Indirect measurement (empirical correlation)

Mechanisms Engineering Test Loop – Phase I Status Report – FY2018

Alternative Approach: Laser-based Sensing

Previous Work: Trace Xe Detection in He

Participants

Dr. Milos Burger Dr. Adam Burak Prof. Igor Jovanovic Misael Ortiz – MS student Ethan Zagotta – Senior undergraduate Joseph Brown – Senior undergraduate Leandro Frigerio – Ph.D. student

Participants

Schedule

Milestone No. / Title	Status	Start Date	Finish Date	% Complete
"M3NU-23-MI-UM020101-102 Procured optics, test material, cover gasses, laser upgrades and maintenance"	Complete	10/1/23	6/30/24	100%
"M3NU-23-MI-UM020101-103 Constructed and validated experimental testbed"	Complete	10/1/23	6/30/24	100%
"M3NU-23-MI-UM020101-105 Measured LOD for trace impurities in liquid Na at operationally relevant temperatures"	On Schedule	4/1/24	3/31/25	45%

Technology Impact

- The technology will be tested at the Mechanisms Engineering Test Loop (METL) facility at the Argonne National Laboratory
- Target capabilities: 24/7 operation, high sensitivity/specificity, instantaneous results, compact size
- Relevance in the nuclear energy industry for reactor designs that employ metal-based cooling

Laboratory Testbed

- Custom-built system supports laser delivery, sample probing, and plasma emission collection
- Stainless steel immersible probe
- ConFlat fittings enable high vacuum
- Detachable Na vessel

Sample preparation (glovebox) Gate valve Na **CLOSED**

Sample Preparation

- Testbed features a sample vessel that can hold 1 kg of sodium
- Test sample was not high purity and is commercially available (99.8% purity)
- The gate valve and its O-ring limits the maximum operating temperature to 250 °C when the gate valve is open

Characteristic Spectral Signatures

- Sodium doublet self-reversed at early delays
- Closer examination of the seemingly steady spectral region shows an oxygen triplet consisting of O I (777.19 / 777.42 / 777.53) nm and atomic line of sodium (Na I 780.98 nm)

Challenges during FY24

- Lens-to-sample distance
- Probe heating
- Recording parameters
- Flow rate optimization
- Gas/sodium temperature

Property		Water		Sodium	
		Liquid	Solid	Liquid	
Density (kg/m³)	920	997	951	927	
Latent heat of evaporation (kJ/mol)	40.5		107.0		
Heat capacity (J/(mol K)	37.6	75.2	28.4	32.3	
Melting point (K)	273.2		371.1		
Liquid range (K)	100		794		
Isothermal compressibility (10 ⁻¹⁰ N ⁻¹ m ²)	2	4.9	1.7	1.9	
Surface tension(mJ/ m ²)		72		190	
Viscosity (Poise=0.1kg/(m s))		0.01		0.007	
Thermal conductivity (J/(m s K))	2.1	0.58	134	84	

F. Franks, "Water, A Matrix of Life", 2nd Ed. (2000).

5 liter/min

0.1 liter/min

ANL's Sodium Extraction System

- The clean sodium from METL will serve as a reference material that can be incrementally contaminated by adding solid sodium hydroxide to study impurity behavior
- ANL will use the Sample Test Basket, Two-Valve Port, and Sample Grabber to pull a sodium sample from the METL inventory

Collaboration with Aix Marseille University

- The laboratory setup at Aix-Marseille University and the rasterized laser irradiation pattern on the sodium sample surface are shown
- Experiments in Ar using both oxidized and non-oxidized samples, with oxidation achieved by exposing the sample surface to ambient air
- Foreign collaborators: Dr. Jörg Hermann, Dr. Vincent Gardette

Collaboration with Aix Marseille University

 Broadband spectral analysis of sodium at various time delays following the laser pulse aims to characterize plasma parameters and quantify trace impurity levels using Calibration-Free Laser-Induced Breakdown Spectroscopy*.

*CF-LIBS; see Hermann et al. (2017) PRE & Hermann et al. (2023) SAB

Concluding Remarks

- High-selectivity, fast, direct, and robust sensing capability
- Accomplishments:
- ✓ Procured optics, test material and cover gasses in FY24
- ✓ Constructed and validated the experimental testbed in FY24
- Plans:
- SNR and LOD enhancement strategies in FY25
- The goal: ppm-level sensitivity and deployment at METL in FY26

Publications:

- 1. M. Ortiz, E. Kent, J. Craparo, R. De Saro, I. Jovanovic, M. Burger, "Laser-Spectroscopy Testbed Design for Impurity Monitoring in Sodium-Cooled Fast Reactors", Transactions of the American Nuclear Society, 130(1): 357-358 (2024).
- 2. A. Burak, L. Frigerio, J. Brown, E. Kent, J. Craparo, I. Jovanovic, R. De Saro, and M. Burger, "Laser-Spectroscopy Testbed for Impurity Monitoring in Liquid Metal-cooled Fast Reactors", *submitted for peer review*

Funding: U.S. DOE under Award Number DE-NE0009403 **Program manager:** Daniel Nichols

Milos Burger

Associate Research Scientist (University of Michigan) <u>milosb@umich.edu</u> | (734)-764-8234 <u>https://ners.engin.umich.edu/people/burger-milos/</u>

Office of **NUCLEAR ENERGY**

Thank You