

Advanced Sensors and Instrumentation

INL/MIS-24-81764

Optimal Sparse Sensing and Sparse Learning for Nuclear Digital Twins Mohammad G. Abdo, Digital Reactor Technology and Development C160, INL

Advanced Sensors and Instrumentation (ASI) Annual Program Webinar November 4, 6-7, 2024

Modeling and Simulation Specialist: Mohammad Abdo, Ph.D.

Digital Reactor Technology and Development C160, INL

About the Presenter

- Mohammad G. Abdo, Modeling and Simulation Specialist, Digital Reactor Technology and Development (C160).
 Reactor Systems Design and Analysis | NS&T | INL
- Research areas of interest and highlights:

- Sensitivity-informed ROM-based pre-conceptual design of a TREAT Sodium Loop experiment.
- LWRS-RISA pathway: Fuel reload pattern Optimization. (Al technical lead and WPM)
- Validation, Scaling, and Interpolation of experiments for representativity of full plants. (PI)
- Optimal Sparse Sensing and Sparse Signal Recovery for Nuclear Digital Twins. (PI)
- Metamodeling for predicting effective properties of porous materials (TRISO compacts). (PI)
- Multiresolution analysis of time-series signals for optimal dispatching of Integrated Energy Systems.
- Areas of interest: Machine Learning, Deep Learning, Reduced Order Modeling, SA/UQ, Sparse Sensing/learning, Digital Twinning, Koopman theory, time delayed embeddings for digital signal processing, Operator Learning (Fourier Neural Operators, Physics-informed Deep-ONETs,..), NLP, Transformers, Attention Mechanisms, LLMs, RAGs, CoT, ToT, MoE, AI Agents and more.

Project Overview

Enable sparse sensing and sparse learning in nuclear digital twins through reconstruction of reactor core flow fields, using optimal sensor placement with spatial constraints.

Project Overview

@Team INL: Mohamr

Mohammad G Abdo: PI Pattrick Calderoni: Co-PI Joshua Cogliati: Co-PI Richard Skifton Carlos Perez JunSoo Yoo **UW:** Krithika Manohar: Co-PI Steven Brunton: Co-PI

Niharika Karnik: Ph.D. Student

What is a digital Twin?

A digitized replica of a physical component, system, or process rendering its whole lifecycle utilizing connectivity to real-time sensory data alongside deep analytics (ML/DL/AI) that :

- enables adaptive learning, inference, reasoning, and decision-making with minimal human intervention
- to achieve the ultimate goal of facilitating real, continuous, and dynamic communication between design, manufacturing, and quality

Source: https://www.nrc.gov/reactors/power/digital-twins.html

DT requirements

Technology Impact

•

- The methodology and algorithms are modular and agnostic of the application.
 - Customers: Every entity that uses instrumentation (power plants, utilities, vendors, testing regs, universities running experimental facilities, TREAT, Microreactors, etc.)
 - When deployed it facilitates:
 - Reconstruction of full fields of interest from few measurements.
 - All other reconstructed points can serve as virtual sensors especially for unreachable locations.
 - Will provide the minimal number of sensors and their optimal placement for reconstruction, forecasting, classification and off-normal conditions detection.
 - Several upstream and downstream components can communicate creating a network of digital Twins.
 - This paves the road for the sought digital transformation and seamlessly facilitate the communication between Integrated energy systems encompassing nuclear and renewable energy.

Results - Case Study 1: OPTI-Twist Prototype

GOAL: Reconstruct temperature profile with minimal sensors under :

Model Calibration Experiment(s)

Uniformly Placed Thermocouples

OPTI-TWIST temperature profile reconstructions through different sensor layouts and uncertainty in estimation caused by noisy sensor measurements. Unconstrained optimization places sensors near the heater region (c), resulting in highly accurate reconstruction with $\epsilon = 0.168$ (a), with constrained optimized sensors resulting in comparably high accuracy $\epsilon = 0.174$ (d). Random sensor placement (b) results in inaccurate reconstructions ($\epsilon = 25.24$) and large estimation uncertainty (e) compared to that of optimized sensor locations (f,g).

- Reconstruction error decreases with more optimized sensors (unconstrained or constrained)
- Random placements still suffer from high error even with additional sensors.

✓ <Models>

<PostProcessor name="mySPSL" subType="SparseSensing" verbosity="debug">

<Goal subType="reconstruction">
 <features>X (m),Y (m),Temperature (K)</features>
 <target>Temperature (K)</target>
 <basis>SVD</basis>
 <nModes>4</nModes>
 <nSensors>4</nSensors>
 <optimizer>QR</optimizer>
 </Goal>
 </Models>

Implemented in RAVEN (INL's Open-source ML pipeline orchestrator)

Results - Case Study 2: TRISO Fuel Irradiation Experiment

- Goal 1 : Optimize height (Z-axis) at which thermocouples should be placed inside the fuel to reconstruct fuel temperature profile.
- Goal 2 : Choose best thermocouple locations on the graphite holder from all the green holes shown in Figure 1 to reconstruct the fuel temperature profile.

Figure 1 : Top view of Graphite Holder 5 with thermocouple locations.

Figure 2 : Graphite Holder 5 with fuel in 3D.

Results - Case Study 3: Steam generator Design

17

Secondary side temperature profile reconstructed from 3 constrained sensors results in a maximum reconstruction error of 0.9 % over all test samples (a,b) and the maximum uncertainty in reconstruction for noisy sensor measurements is 0.01 °F (c).

The leading three POD modes of secondary side temperature capture 99 % of energy content and provide accurate reconstructions of temperature fields. The first POD mode captures the secondary side temperature profile whereas the 3rd POD mode captures variation in the heat flux that cause changes in temperature along the normalized z coordinates in the steam generator

Heat Flux inferred from reconstructed temperature measurements

Concluding Remarks

- Full Field Reconstruction from **Optimally Placed X Sparse Sensors Outperforms** 4X random sensors by Several Orders of magnitudes of accuracy.
- Future work includes extending the sensor placement to anomaly and off-normal conditions detection.
- Intellectual property/copy rights: RAVEN ٠ Sparse Sensing Postprocessor https://github.com/idaholab/raven/blob/devel/r avenframework/Models/PostProcessors/Sparse Sensing.py

MDPI

References

- Krithika Manohar, J Nathan Kutz, and Steven L Brunton. "Optimal sensor and actuator selection using balanced model reduction". In: IEEE Transactions on Automatic Control 67.4 (2021), pp. 2108–2115.
- Karnik, N., Abdo, M. G., Estrada-Perez, C. E., Yoo, J. S., Cogliati, J. J., Skifton, R. S., ... & Manohar, K. (2024). "Constrained optimization of sensor placement for nuclear digital twins." IEEE Sensors Journal. (published 02/28/2024)
- Karnik, N., M. G. Abdo, and K. Manohar. "Optimal Sparse Sensor Placement with Adaptive Constraints for Nuclear Digital Twins." 75th Annual Meeting of the APS Division of Fluid Dynamics (APS DFD 2022) November 20-22, 2022, Indianapolis, IN.
- DICE 2024: presentation about applications of sparse sensing in nuclear digital twins.
- Karnik, N., Abdo, M. G., Manohar K. "Data-Driven Sensor Placement for Nuclear Reactor Transient Analyses in Digital Twins". Bulletin of the American Physical Society
- AI Institute in Dynamic Systems CTF workshop (Sponsored by NSF)
- PHSOR 2024, Scintific ML workshop: "Sparse sensing and Sparse Learning for Nuclear Digital Twins."

The traditional mindset looks at M&S after design, prototyping, building, and maybe even experimenting. The paradigm shift is to incorporate modeling and ML in each step a long the pipeline. Nuclear applications lack the luxury of immersive instrumentation. Thus, this instrumentation must be carefully and optimally placed to gain the maximum knowledge/insights from the dynamical process.

Mohammad G. Abdo, Ph.D. Modeling and Simulation Scientist | Digital Reactor Technology and **Development** (C160) Reactor Systems Design and Analysis | NS&T mohammad.abdo@inl.gov | REC EROB IF-654 LinkedIn 3EL103 | Phone: 208-526-4640 ResearchGate Idaho National Laboratory 2525 Fremont Ave. Idaho Falls, 83415 ID ORCiD: 0000-0001-9845-6978 https://www.linkedin.com/in/mohammad-abdo-a7625082/ https://www.researchgate.net/profile/Mohammad-Abdo/research https://aithub.com/Jimmv-INL

GitHub

Office of **NUCLEAR ENERGY**

Thanks for attention!

Idaho National Laboratory

Backup Slides

QR factorization: Orthonormal Q, upper-triangular R, permutation S

- $|\det \otimes \Phi_r|$ = product of (magnitudes of) diagonal entries of R
- Pivot indices correspond to optimal sensor locations
- We enforce constraints by selecting the next pivot from the admissible locations.

Selecting sensors/pivots in the admissible locations

Column's corresponding to constrained sensors

QR factorization: Orthonormal Q, upper-triangular R, permutation S

- $|\det \otimes \Phi_r|$ = product of (magnitudes of) diagonal entries of R
- Pivot indices correspond to optimal sensor locations
- We enforce constraints by selecting the next pivot from the admissible locations.

Selecting sensors/pivots in the admissible locations

Column corresponding to constrained sensors

QR factorization: Orthonormal Q, upper-triangular R, permutation S

- $|\det S \Phi_r|$ = product of (magnitudes of) diagonal entries of R
- Pivot indices correspond to optimal sensor locations
- We enforce constraints by selecting the next pivot from the admissible locations.

Selecting sensors/pivots in the unconstrained locations

Column's corresponding to constrained sensors

QR factorization: Orthonormal Q, upper-triangular R, permutation S

- $|\det \otimes \Phi_r|$ = product of (magnitudes of) diagonal entries of R
- Pivot indices correspond to optimal sensor locations
- We enforce constraints by selecting the next pivot from the admissible locations.

Selecting sensors/pivots in the unconstrained locations

Column's corresponding to constrained sensors

IDAHO NATIONAL LABORATORY

IDAHO NATIONAL LABORATORY

IDAHO NATIONAL LABORATORY

A. 2D Heat Flow through a thin plate

Sensor placement for reconstruction of temperature profile of a 2D heat flow through a thin plate for various constrained scenarios.

B. Olivetti faces

unconstrained

Constrained (exactly 3) 5

Constrained (max 3)

Constrained (max 1)

B. Olivetti faces (multiple constrained regions)

W

- Enable sparse sensing and sparse learning in nuclear digital twins through reconstruction of reactor core flow fields, using optimal sensor placement with spatial constraints such as:
 - User-specified sensor locations
 - Maximum allowable number of sensors restricted regions of a reactor
 - Implicit constraints (not only involving search parameters i.e, grid locations, but also responses of interest i.e., temperature)
 - Sensors located a specific distance apart from each other
 - \circ Using line sensors.
 - Constraining one degree of freedom (holes already bored but at which height should we place the Thermocouple)
- The sparse sensing algorithm is demonstrated on the Opti-TWIST prototype

3D CFD Model of the steam generator

Figure 1. 3D CAD of 1/4th of the SG primary side fluid domain.

	Riser	Upper Shell	SG Tubes
Quantity	1	1	107
ID (in/m)	0.8150/0.0207	10.126/0.2572	0.495/0.0126
OD (in/m)	1.315/0.0334	-	0.625/0.0159
Length (in/m)	451.3/11.46	24/0.6096	24/0.6096
Flow area (in ² /m ²)	0.5217/3.3657x10-4	80.5315/0.0520	0.1924/1.2416x10-4

imensions of the fluid domain used for CFD analysis.

- Preliminary results are based on assumption of isothermal conditions.
- Total number of grid points = 1882411
- Coarse mesh for the upper shell and fine mesh for the tubes.
- <u>Sensors can be placed only in the upper shell</u> (beyond 0.6196 m)
- Calculation of reconstruction error (relative)
 trueValue(sim) sensorReconstructedValue

trueValue(sim)

 $\times 100$

 Calculation of reconstruction error (absolute) *trueValue – sensorReconstructedValue*

- Preliminary results show a higher average accuracy (~O(10⁻¹)) as compared to randomly/intuitively (~O(10⁴)) placing sensors.
- Visualize **vorticity** and **log vorticity** fields for a better idea of the dynamics of the flow and sensor locations.
- Use non-isothermal data for velocity/ log velocity sensor placement and deciding which tubes should carry temperature instrumentation.

Future Work

- Optimal sensor placement for multi-class classification, (predicting which accident scenario (Loss of Coolant Accident (LOCA), loss of power, etc.)
- Using Mutual Information and Entropy-based metrics for sensor placement.
- Comparing sensor selection to other feature selection algorithms and utilize them to improve selection of sensors.
- Measuring a certain field of interest (e.g., temperature) and inferring another field of interest (e.g., velocity).
- Anomaly detection
- Tensor decomposition instead of Singular value decomposition (SVD) when we have time and samples.
- Implementing constrained sensor placement in RAVEN.

a) Uncertainty estimation reveals that a rank 10 model is not sufficiently descriptive of dynamics after t =300 under sensor noise.
The rank 20 approximation (b) is valid over a longer time horizon of 500s of test data. As the SNR decreases.

500

47.0

c,d) Estimation error is well captured by the standard deviation prediction as noise increases.