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« Mohammad G. Abdo, Modeling and Simulation Specialist,
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« Research areas of interest and highlights:

inJR 27X

Sensitivity-informed ROM-based pre-conceptual design of a TREAT Sodium Loop experiment.
LWRS-RISA pathway: Fuel reload pattern Optimization. (Al technical lead and WPM)
Validation, Scaling, and Interpolation of experiments for representativity of full plants. (PI)
Optimal Sparse Sensing and Sparse Signal Recovery for Nuclear Digital Twins. (PI)
Metamodeling for predicting effective properties of porous materials (TRISO compacts). (PI)

Multiresolution analysis of time-series signals for optimal dispatching of Integrated Energy Systems.

Areas of interest: Machine Learning, Deep Learning, Reduced Order Modeling, SA/UQ, Sparse
Sensing/learning, Digital Twinning, Koopman theory, time delayed embeddings for digital signal
processing, Operator Learning (Fourier Neural Operators, Physics-informed Deep-ONETs,..), NLP,
Transformers, Attention Mechanisms, LLMs, RAGs, CoT, ToT, MoE, Al Agents and more.



https://www.linkedin.com/in/mohammad-abdo-a7625082/
https://www.researchgate.net/profile/Mohammad-Abdo
https://github.com/Jimmy-INL

Project Overview

Enable sparse sensing and sparse learning in nuclear digital twins through
reconstruction of reactor core flow fields, using optimal sensor placement with spatial

constraints.

Learned sensor locations
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What is a digital Twin?

A digitized replica of a physical component, system, or process rendering its whole lifecycle utilizing
connectivity to real-time sensory data alongside deep analytics (ML/DL/AI) that :

« enables adaptive learning, inference, reasoning, and decision-making with minimal human intervention

» to achieve the ultimate goal of facilitating real, continuous, and dynamic communication between
design, manufacturing, and quality

Data and Information

Cgb Storage Management

Physical Assets % b Data & ' ‘ Sharing and @

A ibili
Performance i

I
| \ |
<, _ Nuclear Digital % and Visusiztion
Asset Twin System Twin Process Twin " 255" Power Plant
gi o ‘ o — = : '_\__I

- - ~ S| = <
' § X 7N = l/ g
L L = = < v, Actions &
. Y N WD Recommendations

-

[
Component/part
Twin

®

0&M Autonomous
Recommendations Operations & Controls

f‘f,] Other Models
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Technology Impact

« The methodology and algorithms are modular and agnostic of
the application.

« Customers: Every entity that uses instrumentation (power
plants, utilities, vendors, testing regs, universities running
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optimal placement for reconstruction, forecasting,
classification and off-normal conditions detection.

» Several upstream and downstream components can
communicate creating a network of digital Twins.

» This paves the road for the sought digital Pump Gondenser Gooling Towers
transformation and seamlessly facilitate the
communication between Integrated energy systems
encompassing nuclear and renewable energy.
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Results - Case Study 1: OPTI-Twist Prototype

GOAL.: Reconstruct temperature profile with minimal sensors under :

i v
40 Distance Constraints
20
User-specified Sensors
0
s Region Constraints
n = All possible sensor locations
r = Selected sensors
—40 Sc= Constrained locations

:u'n e s = Maximum sensors in Constrained region
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OPTI-TWIST temperature profile reconstructions through different sensor layouts and uncertainty in estimation
caused by noisy sensor measurements. Unconstrained optimization places sensors near the heater region (c), resulting in
highly accurate reconstruction with € = (.168 (a), with constrained optimized sensors resulting in comparably high accuracy
e = 0.174 (d). Random sensor placement (b) results in inaccurate reconstructions (¢ = 25.24) and large estimation uncertainty
(e) compared to that of optimized sensor locations (f,g).




Relative reconstruction error

Relative reconstruction error

Reconstruction error decreases with more optimized sensors (unconstrained or constrained)
Random placements still suffer from high error even with additional sensors.
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Results - Case Study 2: TRISO Fuel Irradiation Experiment

Goal 1 : Optimize height (Z-axis) at which thermocouples should be placed inside the fuel to
reconstruct fuel temperature profile.

Goal 2 : Choose best thermocouple locations on the graphite holder from all the green holes shown in
Figure 1 to reconstruct the fuel temperature profile.
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Figure 1 : Top view of Graphite Holder 5 with thermocouple locations. Figure 2 : Graphite Holder 5 with fuel in 3D.
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Results - Case Study 3: Steam generator Design
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transition zones

Secondary side temperature profile reconstructed from 3 constrained sensors results in a

maximum reconstruction error of 0.9 % over all test samples (a,b) and the maximum uncertainty
in reconstruction for noisy sensor measurements is 0.01 °F (c).
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Concluding Remarks
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Concluding Remarks

The traditional mindset looks at M&S after design, prototyping, building, and maybe even
experimenting. The paradigm shift is to incorporate modeling and ML in each step a long the
pipeline. Nuclear applications lack the luxury of immersive instrumentation. Thus, this
instrumentation must be carefully and optimally placed to gain the maximum knowledge/insights
from the dynamical process.
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lllustration of QR with Column Pivoting

QR factorization: Orthonormal Q, upper-triangular R, permutation S
* | det S®, | = product of (magnitudes of) diagonal entries of R

* Pivot indices correspond to optimal sensor locations

* We enforce constraints by selecting the next pivot from the admissible
locations.

Selecting sensors/pivots in the admissible locations
Column with Maximal Two Norm ||@]|, from constrained indices
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lllustration of QR with Column Pivoting

QR factorization: Orthonormal Q, upper-triangular R, permutation S
+ | det S®,.| = product of (magnitudes of) diagonal entries of R

* Pivot indices correspond to optimal sensor locations

* We enforce constraints by selecting the next pivot from the admissible
locations.

Selecting sensors/pivots in the admissible locations

Update \
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lllustration of QR with Column Pivoting

QR factorization: Orthonormal Q, upper-triangular R, permutation S
| det S®,.| = product of (magnitudes of) diagonal entries of R

* Pivot indices correspond to optimal sensor locations

* We enforce constraints by selecting the next pivot from the admissible
locations.

Selecting sensors/pivots in the unconstrained locations
Column with Maximal Two Norm || @] [, from unconstrained indices

ﬁ
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lllustration of QR with Column Pivoting

QR factorization: Orthonormal Q, upper-triangular R, permutation S
* | det S®,.| = product of (magnitudes of) diagonal entries of R

* Pivot indices correspond to optimal sensor locations

* We enforce constraints by selecting the next pivot from the admissible
locations.

Selecting sensors/pivots in the unconstrained locations

Update \
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In [10]: 1 import Part

2 CapsuleSTEP = ("/Users/abdomg/projects/Sparse_Sensing_in_NDTs LDRD/modellng/physchs based/TH_models/CAD/OPTI-
TWIST PerturbPowernBC/TwistCapsule.step")

3 Capsule = Part.Shape()

4 Capsule.read(CapsuleSTEP)

5 Part.show(Capsule)

6 CapsuleDoc = FreeCAD.ActiveDocument

1. Physical Space

executed in 99ms, finished 17:46:36 2022-06-18

In [11]: 1 render_document (CapsuleDoc)
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A. 2D Heat Flow through a thin plate
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Sensor placement for reconstruction of temperature profile of a 2D heat flow through a thin
plate for various constrained scenarios.
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Adding Constraints

— Enable sparse sensing and sparse learning in nuclear digital twins through
reconstruction of reactor core flow fields, using optimal sensor placement with
spatial constraints such as:

o User-specified sensor locations
o Maximum allowable number of sensors restricted regions of a reactor

o Implicit constraints (not only involving search parameters i.e, grid locations,
but also responses of interest i.e., temperature)

o Sensors located a specific distance apart from each other
o Using line sensors.

o Constraining one degree of freedom (holes already bored but at which
height should we place the Thermocouple)

— The sparse sensing algorithm is demonstrated on the Opti-TWIST prototype
D
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3D CFD Model of the steam generator

Figure 1. 3D CAD of 1/4th of the SG primary side fluid domain.

——m_mnmm- SG Tubes
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ID (|nlm) o 8150/0.0207 10.126/0.2572 0.495/0.0126

1.315/0.0334 - 0.625/0.0159
Length (in/m) 451.3/11.46 24/0.6096 24/0.6096

Flow area (in?/m?) 0.5217/3.3657x10-4 80.5315/0.0520 0.1924/1.2416x10-4




* Preliminary results are based on assumption of
Isothermal conditions.

« Total number of grid points = 1882411

e Coarse mesh for the upper shell and fine mesh for
the tubes.

 Sensors can be placed only in the upper shell
(beyond 0.6196 m)

e Calculation of reconstruction error (relative)
|trueValue(sim) — sensorReconstructedValue |

trueValue(sim)
X 100 Faxjg 010, .5 0,00

e Calculation of reconstruction error (absolute)
|trueValue — sensorReconstructedValue]

® Sensors allowed in this region
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* Preliminary results show a higher average accuracy (~0(10-')) as compared to
randomly/intuitively (~0(10%)) placing sensors.

« Visualize vorticity and log vorticity fields for a better idea of the dynamics of the
flow and sensor locations.

« Use non-isothermal data for velocity/ log velocity sensor placement and deciding
which tubes should carry temperature instrumentation.
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Future Work

Optimal sensor placement for multi-class classification, (predicting which accident scenario (Loss of
Coolant Accident (LOCA), loss of power, etc.)

Using Mutual Information and Entropy-based metrics for sensor placement.

Comparing sensor selection to other feature selection algorithms and utilize them to improve selection of
Sensors.

Measuring a certain field of interest (e.g., temperature) and inferring another field of interest (e.g., velocity).
Anomaly detection

Tensor decomposition instead of Singular value decomposition (SVD) when we have time and samples.
Implementing constrained sensor placement in RAVEN.
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(c) Increasing uncertainty in estimation of a; with a decreasing SNR.
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(d) Increase in estimation errors with a decreasing SNR.

a) Uncertainty estimation reveals
that a rank 10 model is not
sufficiently descriptive of dynamics
after t =300 under sensor noise.
The rank 20 approximation (b) is
valid over a longer time horizon of
500s of test data. As the SNR
decreases.

c,d) Estimation error is well captured
by the standard deviation prediction
as noise increases.
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