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About the Presenter

• Mohammad G. Abdo, Modeling and Simulation Specialist,

 Digital Reactor Technology and Development (C160).
 Reactor Systems Design and Analysis | NS&T | INL

• Research areas of interest and highlights:
– Sensitivity-informed ROM-based pre-conceptual design of a TREAT Sodium Loop experiment.
– LWRS-RISA pathway: Fuel reload pattern Optimization. (AI technical lead and WPM)
– Validation, Scaling, and Interpolation of experiments for representativity of full plants. (PI)
– Optimal Sparse Sensing and Sparse Signal Recovery for Nuclear Digital Twins. (PI)
– Metamodeling for predicting effective properties of porous materials (TRISO compacts). (PI)
– Multiresolution analysis of time-series signals for optimal dispatching of Integrated Energy Systems.
– Areas of interest: Machine Learning, Deep Learning, Reduced Order Modeling, SA/UQ, Sparse 

Sensing/learning, Digital Twinning, Koopman theory, time delayed embeddings for digital signal 
processing, Operator Learning (Fourier Neural Operators, Physics-informed Deep-ONETs,..), NLP, 
Transformers, Attention Mechanisms, LLMs, RAGs, CoT, ToT, MoE, AI Agents and more.   

https://www.linkedin.com/in/mohammad-abdo-a7625082/
https://www.researchgate.net/profile/Mohammad-Abdo
https://github.com/Jimmy-INL
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3Project Overview

Enable sparse sensing and sparse learning in nuclear digital twins through 
reconstruction of reactor core flow fields, using optimal sensor placement with spatial 
constraints. 
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A digitized replica of a physical component, system, or process rendering its whole lifecycle utilizing
connectivity to real-time sensory data alongside deep analytics (ML/DL/AI) that :

• enables adaptive learning, inference, reasoning, and decision-making with minimal human intervention
• to achieve the ultimate goal of facilitating real, continuous, and dynamic communication between

design, manufacturing, and quality

Diagram courtesy : Idaho National Laboratory (INL)

Source: https://www.nrc.gov/reactors/power/digital-twins.html 

What is a digital Twin?
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DT requirements
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• The methodology and algorithms are modular and agnostic of 
the application.

• Customers: Every entity that uses instrumentation (power 
plants, utilities, vendors, testing regs, universities running 
experimental facilities, TREAT, Microreactors, etc.)

•   When deployed it facilitates:
• Reconstruction of full fields of interest from few 

measurements.
• All other reconstructed points can serve as virtual 

sensors especially for unreachable locations.
• Will provide the minimal number of sensors and their 

optimal placement for reconstruction, forecasting, 
classification and off-normal conditions detection.

• Several upstream and downstream components can 
communicate creating a network of digital Twins.

• This paves the road for the sought digital 
transformation and seamlessly facilitate the 
communication between Integrated energy systems 
encompassing nuclear and renewable energy. 

Technology Impact
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Opti-TWIST Capsule 

Heater

n = All possible sensor locations
r = Selected sensors
𝑠𝑠𝑐𝑐= Constrained locations
s = Maximum sensors in Constrained region  

𝑠𝑠𝑐𝑐

S

Distance Constraints

Region Constraints

User-specified Sensors

GOAL: Reconstruct temperature profile with minimal sensors under :

Results - Case Study 1: OPTI-Twist Prototype



11 Image courtesy : Idaho National Laboratory 
(INL)

Model Calibration Experiment(s)

Uniformly Placed Thermocouples
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• Reconstruction error decreases with more optimized sensors (unconstrained or constrained) 
• Random placements still suffer from high error even with additional sensors. 
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Implemented in RAVEN (INL’s Open-source 
ML pipeline orchestrator) 
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Results - Case Study 2: TRISO Fuel Irradiation Experiment

• Goal 1 : Optimize height (Z-axis) at which thermocouples should be placed inside the fuel to 
reconstruct fuel temperature profile.

• Goal 2 : Choose best thermocouple locations on the graphite holder from all the green holes shown in 
Figure 1 to reconstruct the fuel temperature profile. 

Figure 1 : Top view of Graphite Holder 5 with thermocouple locations. Figure 2 : Graphite Holder 5 with fuel in 3D.
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ConstrainedUnconstrained Random
Sensor X Y Z

0 0.892 0.892 12.3080

1 -1.081 0.000 14.1535

2 -1.088 -0.438 9.8000

Sensor X Y Z

0 -0.638 0.005 9.000

1 -0.302 -0.781 11.154

2 0.306 0.783 14.167

Sensor X Y Z

0 -1.050 0.110 11.346

1 0.857 0.252 14.000

2 +0.615 0.892 10.962



16

(a-c) Temperature profile reconstructions (d-e) Relative 
reconstruction errors. Unconstrained optimization leads to a 
maximum reconstruction error of ε = 0.75% (a,d), while 
introduction constraints results in ε = 1% (b,e). Random sensor 
placement (c,f) results in inaccurate reconstructions
ε = 25% compared to that of optimized sensor locations
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Results - Case Study 3: Steam generator Design

Baffles = Constraints
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a) Constrained sensor reconstruction ε = 0.9% (b) Max reconstruction error over all test 
samples is 0.9%

(c) High uncertainty in temperature 
transition zones

Secondary side temperature profile reconstructed from 3 constrained sensors results in a 
maximum reconstruction error of 0.9 % over all test samples (a,b) and the maximum uncertainty 
in reconstruction for noisy sensor measurements is 0.01 °F (c).
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The leading three POD modes of secondary side temperature capture 
99 % of energy content and provide accurate reconstructions of 
temperature fields. The first POD mode captures the secondary side 
temperature profile whereas the 3rd POD mode captures variation in 
the heat flux that cause changes in temperature along the normalized z 
coordinates in the steam generator

Heat Flux inferred from reconstructed temperature measurements
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• Full Field Reconstruction from 
Optimally Placed X Sparse Sensors 
Outperforms 4X random sensors by 
Several Orders of magnitudes of 
accuracy. 

• Future work includes extending the 
sensor placement to anomaly and 
off-normal conditions detection. 

• Intellectual property/copy rights: RAVEN 
Sparse Sensing Postprocessor 
https://github.com/idaholab/raven/blob/devel/r
avenframework/Models/PostProcessors/Sparse
Sensing.py

Concluding Remarks
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The traditional mindset looks at M&S after design, prototyping, building, and maybe even 
experimenting. The paradigm shift is to incorporate modeling and ML in each step a long the 

pipeline. Nuclear applications lack the luxury of immersive instrumentation. Thus, this 
instrumentation must be carefully and optimally placed to gain the maximum knowledge/insights 

from the dynamical process.

Concluding Remarks

Mohammad G. Abdo, Ph.D.
Modeling and Simulation Scientist | Digital Reactor Technology and 
Development (C160)
Reactor Systems Design and Analysis | NS&T
mohammad.abdo@inl.gov  | REC EROB IF-654 
3EL103 | Phone: 208-526-4640
Idaho National Laboratory  |  2525 Fremont Ave.  |  Idaho Falls, 
ID  |  83415
ORCiD: 0000-0001-9845-6978
https://www.linkedin.com/in/mohammad-abdo-a7625082/
https://www.researchgate.net/profile/Mohammad-Abdo/research
https://github.com/Jimmy-INL 

LinkedIn ResearchGate GitHub
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Thank You

Thanks for attention!
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Efficient greedy constrained optimization scheme: QR factorization



Validation through enumerating all possible placements



Visualization
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1. Physical Space

2. Digital/Virtual 
Space

3. Data Space

(Prediction/Monitoring/Control)

4. Services Space

(ASI, P&ID, BOM, Actuators)

(CAD/GUIs/Analytics)

(Storage, Connectivity, IIoT)



33

1. Physical Space

2. Digital/Virtual 
Space

3. Data Space

(Prediction/Monitoring/Control)

4. Services Space

(ASI, P&ID, BOM, Actuators)

(CAD/GUIs/Analytics)

(Storage, Connectivity, IIoT)

Data warehouse



Data warehouse
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1. Physical Space

2. Digital/Virtual 
Space

3. Data Space

(Prediction/Monitoring/Control)

4. Services Space

(ASI, P&ID, BOM, Actuators)

(CAD/GUIs/Analytics)

(Storage, Connectivity, IIoT)



A. 2D Heat Flow through a thin plate

(a) Thin Plate initial conditions (b) Temperature profile (1000 iterations) (c) Unconstrained sensors (d) Region Constrained First

(e) User-specified First (f) User-specified Last (g) Distance Constrained (h) Region Constrained (i) Reconstruction errors for different number of sensors for spatial constraints 

Sensor placement for reconstruction of temperature profile of a 2D heat flow through a thin 
plate for various constrained scenarios. 



B. Olivetti faces



B. Olivetti faces (multiple constrained regions)
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– Enable sparse sensing and sparse learning in nuclear digital twins through 
reconstruction of reactor core flow fields, using optimal sensor placement with 
spatial constraints such as:
oUser-specified sensor locations
oMaximum allowable number of sensors restricted regions of a reactor
o Implicit constraints (not only involving search parameters i.e, grid locations, 

but also responses of interest i.e., temperature)
oSensors located a specific distance apart from each other
oUsing line sensors.
o Constraining one degree of freedom (holes already bored but at which 

height should we place the Thermocouple)
– The sparse sensing algorithm is demonstrated on the Opti-TWIST prototype

Adding Constraints

Image courtesy : Idaho National Laboratory 
(INL)
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Data warehouse
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Figure 1. 3D CAD of 1/4th of the SG primary side fluid domain.
Riser Upper Shell SG Tubes

Quantity 1 1 107
ID (in/m) 0.8150/0.0207 10.126/0.2572 0.495/0.0126
OD (in/m) 1.315/0.0334 - 0.625/0.0159
Length (in/m) 451.3/11.46 24/0.6096 24/0.6096
Flow area (in2/m2) 0.5217/3.3657x10-4 80.5315/0.0520 0.1924/1.2416x10-4

Table 1. Dimensions of the fluid domain used for CFD analysis.

3D CFD Model of the steam generator
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• Preliminary results are based on assumption of 
isothermal conditions.

• Total number of grid points = 1882411
• Coarse mesh for the upper shell and fine mesh for 

the tubes.
• Sensors can be placed only in the upper shell 

(beyond 0.6196 m)
• Calculation of reconstruction error (relative)
|𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑠𝑠𝑠𝑠𝑠𝑠)  − 𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠𝑡𝑡𝑡𝑡𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 | 

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑠𝑠𝑠𝑠𝑠𝑠)
 

× 100
• Calculation of reconstruction error (absolute)

|𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠𝑡𝑡𝑡𝑡𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡|

Sensors allowed in this region 
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Constrained errorrec Random errorrec 
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• Preliminary results show a higher average accuracy (~𝒪𝒪(10-1)) as compared to 
randomly/intuitively (~𝒪𝒪(104)) placing sensors.

• Visualize vorticity and log vorticity fields for a better idea of the dynamics of the 
flow and sensor locations.

• Use non-isothermal data for velocity/ log velocity sensor placement and deciding 
which tubes should carry temperature instrumentation. 
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Future Work
45

• Optimal sensor placement for multi-class classification, (predicting which accident scenario (Loss of 
Coolant Accident (LOCA), loss of power, etc.)

• Using Mutual Information and Entropy-based metrics for sensor placement. 
• Comparing sensor selection to other feature selection algorithms and utilize them to improve selection of 

sensors.
• Measuring a certain field of interest (e.g., temperature) and inferring another field of interest (e.g., velocity).
• Anomaly detection
• Tensor decomposition instead of Singular value decomposition (SVD) when we have time and samples.
• Implementing constrained sensor placement in RAVEN.

Confusion Matrix
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c,d) Estimation error is well captured 
by the standard deviation prediction 
as noise increases. 

a) Uncertainty estimation reveals 
that a rank 10 model is not 
sufficiently descriptive of dynamics 
after t =300 under sensor noise. 
The rank 20 approximation (b) is 
valid over a longer time horizon of 
500s of test data. As the SNR 
decreases.
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