

Office of **NUCLEAR ENERGY**

Advanced Sensors and Instrumentation

Passive Monitors Silicon Carbide

Advanced Sensors and Instrumentation (ASI) Annual Program Webinar November 4, 6-7, 2024

R&D Staff: Padhraic L. Mulligan, PhD

Oak Ridge National Laboratory, Nuclear Energy & Fuel Cycle Division

Project Overview: SiC Passive Monitors

Purpose

- SiC frequently used as passive temperature monitor (TM) in irradiation experiments
- ASTM standard does not exist for SiC temperature monitors
- Historical SiC TM analysis methods better suited for high fluence experiments which achieve saturation swelling

Scope

- Plan for development of SiC thermometry ASTM standard & round robin testing
- Apply deep level transient spectroscopy (DLTS) as irradiated SiC analysis technique

Schedule

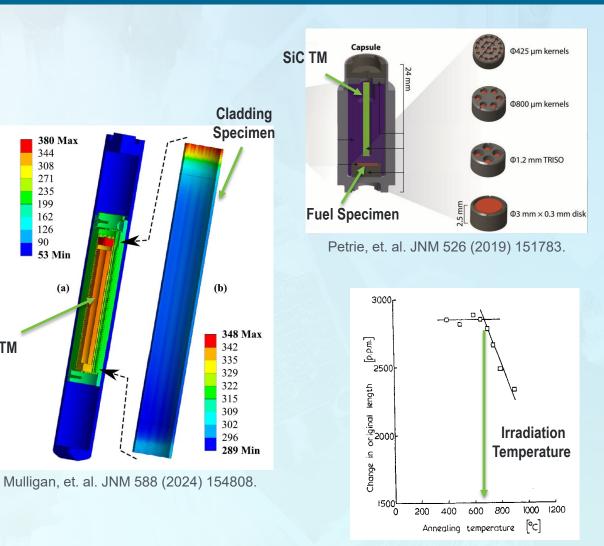
- Project completion delayed to FY25 waiting to receive irradiated SiC
 - M3CT-24OR0703022: Research plan for the development of SiC thermometry ASTM standard and round robin testing
 - M3CT-24OR0703021: Assessment of the use of deep level transient spectroscopy (DLTS) for low fluence SiC temperature measurement

Participants

- INL: Malwina Wilding
- ORNL: Anne Campbell, Hsin Wang, David Glasgow

Technology Impact: SiC Passive Monitors

Benefits


- Does not require instrument leads
- Continuous temperature indication $\sim 200 1,000^{\circ}$ C
- Compact geometry

Mechanism

- Neutron irradiation damage causes point defects and lattice dilations in SiC
- Defects can be annealed post-irradiation when the annealing temperature exceeds irradiation temperature

Role in Nuclear Energy Industry

- Provides indication of temperature conditions during materials irradiations
 - Cladding materials
 - Moderators (graphite)
 - Fuels
- Data to support license/regulatory applications
- No standardized method for use

R.P. Thorne, V.C. Howard, B. Hope, Proc. Br. Ceram. Soc. 7 (1967) 449-459.

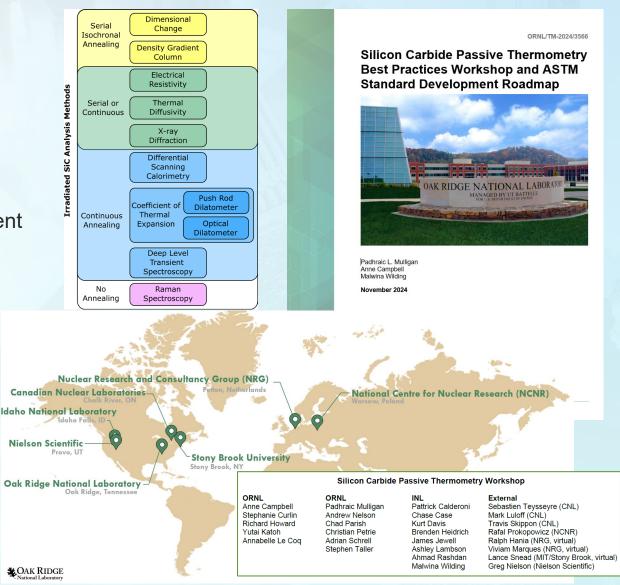
344

308

271 235 199

162

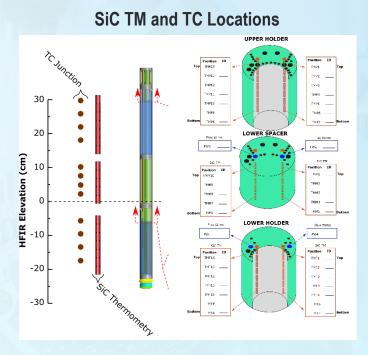
126


90

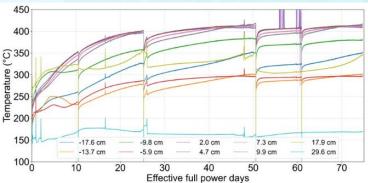
SiC TM

SiC Passive Monitors Workshop

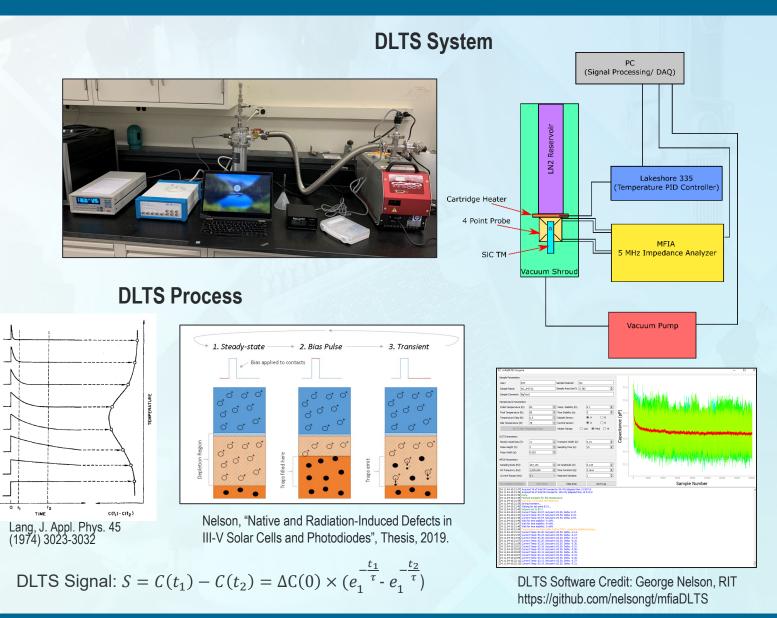
- Hosted SiC passive thermometry workshop May 8-9, 2024
 - 27 attendees from US/international labs and industry
 - Discussed various SiC analysis methods/best practices
 - Several sessions on SiC TM technique, tours of HFIR, LAMDA, hot cells
 - Developed high-level plan for ASTM standard development
- Workshop outcomes, review of SiC analysis methods, and ASTM standard development plan included in upcoming ORNL Technical Memo



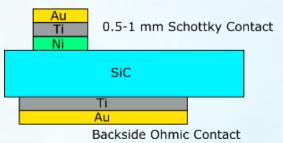
SiC Passive Monitors Workshop (Round Robin Testing)

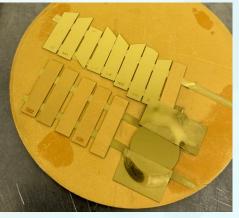

- Developed plan for round robin SiC analysis
 - Pre-irradiated SiC from three reactors
 - HFIR, ATR, MITR
 - Range of temperatures & fluences
 - Six laboratories to perform analysis
 - INL, ORNL, MIT, CNL (Canada), NRG (Netherlands), NCNR (Poland)
- Discussed ASTM standard development with ASTM E10 Committee
 - Requested a "best practices" document to subcommittee chairs for discussion
- Awaiting shipment of HFIR irradiated experiment

SiC Thermometry in Upper Holder

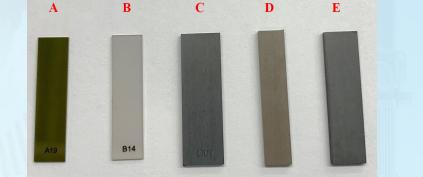


WIRE-21 Thermocouple Measurements

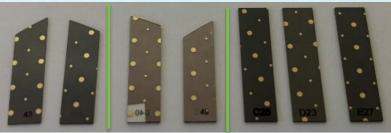

SiC Deep Level Transient Spectroscopy


- DLTS can identify electrically active defects in semiconductor
 - Activation energy (ΔE)
 - Capture cross section (σ_n)
 - Defect concentration (N_T)
- Requires
 - Rectifying junction (Schottky or p-n)
 - Well-behaved depletion region
 - High defect concentration $(10^{-5} \times N_d)$
- Setup and integrated DLTS system at ORNL
 - 77–500 K
 - DC 5 MHz
 - -10 10 V bias
 - GUI controlled/automated
- Traditional lock-in amplifier/pulse generator/DAQ replaced with programable MFIA (Zurich Instr.)

DLTS Specimen Fabrication


- Five different types of SiC substrates
- Metal contact deposition performed in Center for Nanophase Materials Science cleanroom
 - Electron-beam evaporation
 - Full backside ohmic contact
 - Shadow mask used for topside Schottky contacts
 - Avoided annealing of contacts
- Deposited on both Si- and Cface of wafer

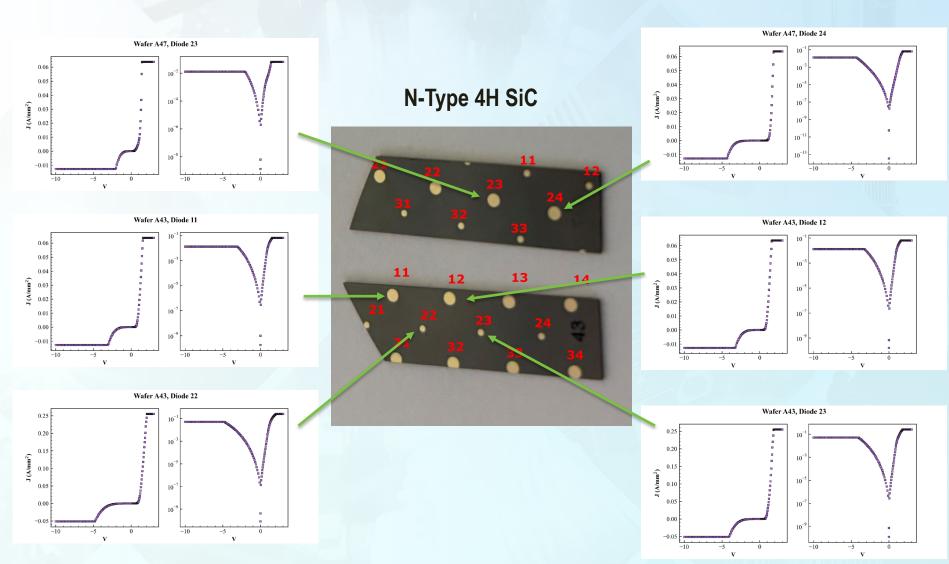
Backside contacts


Five Types of Commercially Available SiC

	ID Prefix	Vendor	SiC Туре	Form Factor
	А	MSE	4H, N-type, 4.0° off axis toward <11-20>	0.35×101 mm diameter wafer
Ċ	В	MSE	4H, Semi Insulating (SI), on axis <0001>	0.5×101 mm diameter wafer
-	С	Dow / Rohm & Haas	3C, High Resistivity	6.35×152 mm square plate
	D	CoorsTek	3C PureSiC®, High Resistivity CVD	5.0×200 mm square plate
	Е	ASCM	3C, High Resistivity	6.35×152 mm square plate

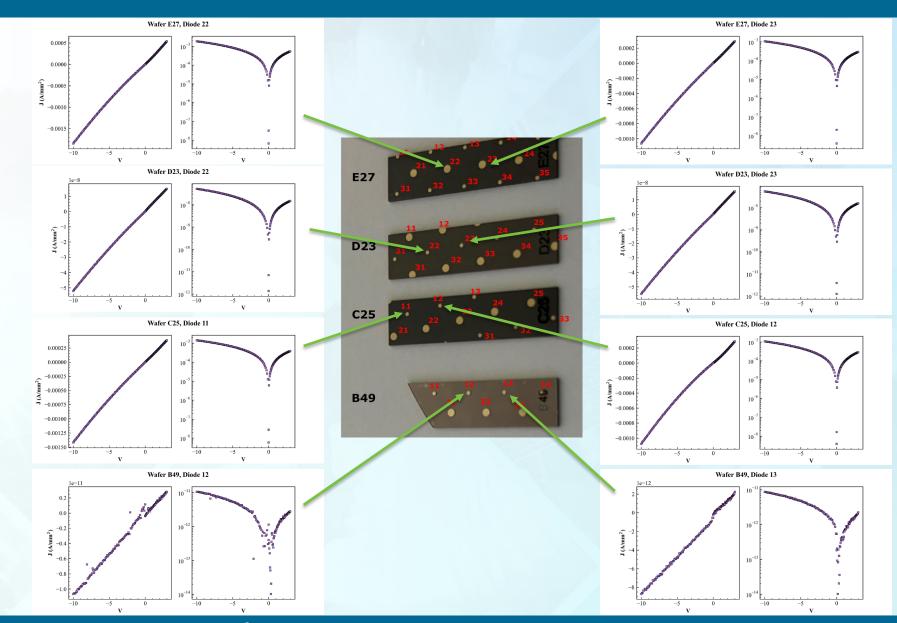
4H N-type SiC

3C SiC



4H Semi Insulating SiC

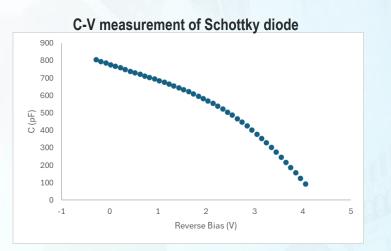
DLTS Specimen Characterization

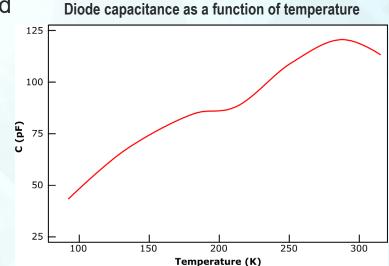

I-V measurements showed N-type 4H material produced good rectify contacts

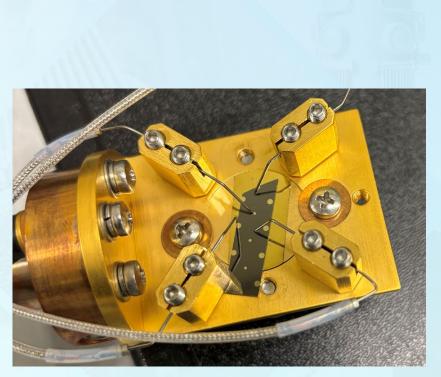
- $-V_{bi} \approx 1.45 1.66 V$
- Ideality factor ≈ 1.22 1.63
- $-\Phi_B \approx 1.25 1.41$

DLTS Specimen Characterization

Semi-insulating 4H SiC and three types of 3C SiC all produced ohmic contacts



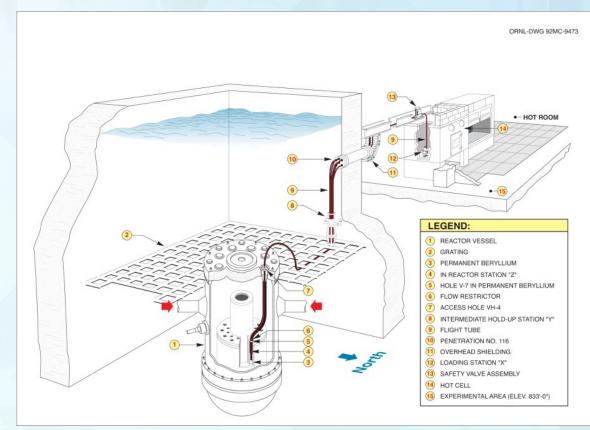

DLTS-Unirradiated SiC


- Unirradiated SiC analyzed using DLTS system
 - 80–320 K
 - 1 MHz
 - 2V reverse bias
 - 1V pulse height, 2 ms pulse width
- Identified two defect levels

 $- E_{C} - 0.35, E_{C} - 0.66 \text{ eV}$

- Doping concentration measured – $N_d = 6.1 \times 10^{14} cm^{-3}$
- Working to incorporate frequency and bias voltage sweep into measurements
- Defect concentrations will be compared to the irradiated SiC material

N-type 4H SiC in cryostat probe station


Irradiated SiC

- SiC specimens irradiated in graphite rabbits using the pneumatic tube of HFIR Neutron Activation Analysis Laboratory
- 4 different fluences
- 3C- and 4H- SiC sample for each fluence
 - 3C- for dilatometry measurement
 - 4H- for DLTS measurement
- Ready for sample preparation by end of year

Sample	Irradiation	Total Fluence
	Time (min)	(n/cm²)
A	5	1.92E+17
В	10	3.84E+17
С	20	7.68E+17
D	30	1.15E+18

Irradiated SiC Specimens

HFIR NAA Laboratory

Concluding Remarks

ASTM Development

- Hosted SiC Passive Thermometry Workshop
- Plan for round robin testing of pre-irradiated SiC

DLTS Analysis of SiC

- DLTS system is integrated and operational
- Fabricated specimens for DLTS measurements on five types of SiC
 - Semi insulating and polycrystalline SiC are not good candidates for DLTS measurements
- Irradiated four samples of 3C- and 4H- to 1.9E+17 1.2E+19 n/cm²

Future Work (CO, no new BA)

- Issue report on SiC Workshop and round robin
- Perform DLTS on irradiated SiC specimens

Padhraic L. Mulligan

R&D Staff, Oak Ridge National Laboratory mulliganpl@ornl.gov (865)-574-9856 ORCiD: 0000-0002-5826-5402

Office of **NUCLEAR ENERGY**

Advanced Sensors and Instrumentation

Thank You

