

Advanced Sensors and Instrumentation

Process-Constrained Data Analytics for Sensor Assignment and Calibration

Advanced Sensors and Instrumentation (ASI) Annual Program Webinar October 24 – 27, 2022

R. Vilim Nuclear Science and Engineering Division Argonne National Laboratory

Project Overview - Objectives

- How to select a sensor set for equipment and sensor health monitoring
 - Given a list of faults to be diagnosed, find the sensor set that will accomplish this goal at the least cost
- Incorporate domain knowledge (physics-based digital twin) to provide for
 - Virtual sensors to reduce number of physical sensors
 - More reliable and explainable diagnoses

Increased fault spatial resolution obtained by addition of sensors

Project Overview - Approach

• Diagnostic Algorithm - Digital Twin Based

- Use automated reasoning to look at difference between digital twin prediction and what sensors are reporting
- Use digital twin to represent domain knowledge
 - How components communicate with each other
 - Process physics for each component

Sensor Assignment Algorithm

- Find the set of sensors that minimizes the cost of satisfying a set of diagnostic objectives
- Cast as a mixed-integer programming (MIP) problem where a sensor in a specific location is 0 or 1

Creation of Physics-Based Digital Twin from P&ID

Project Overview - Schedule

FY19 **FY20** Methods and Algorithm Development **FY21** Analysis and Sensitivity Studies Validate with Utility Data Model Residual **Component Faults Sensor Faults** Residuals Motor Bearings $P_{\rm m}$ Q Pump $p_{\rm in}/p_{\rm out}$ n \$ 600 Model 19 500 0 0 $r_{m,P}$ 0 0 400 0 0 0 0 $r_{m,I}$ 300 Physical Sensors Virtual Sensors Components 9000 0 0 0 $r_{p,\Delta p}$ - RFP 1 _____ RFP 2 8000 0 $r_{c,P}$ ΰ 7000 **Balance** Equations 6000 0 0 0 $r_{m,P2}$ Model Predictions 5000 0 $r_{c,P2}$ 6:00 12:00 474 6:00 12:00 12:00 18:00 476 18:00 6:00 Time (days) Physical Sensors Components **FY22** Iterate with industry on TRL Extensible software User manual Demo sessions • User graphic interface • Beta code release

Technology Impact - Making of a business case

CRITERIA

- Specification of system engineering data limited to P&ID
- Differentiates between component and sensor faults
- Creates virtual sensors
- Immune to plant operating point change
- Rank orders likelihood of component faults by probability
- Formal statement of what is diagnosable and what is not
- Auto reconfigures on dropped sensor
- Solves for an "optimum" sensor set

<i>Digital-Twin</i> Based Diagnosis	<i>Data-Driven</i> Based Diagnosis
~	
~	
~	
~	
~	
~	
\checkmark	
\checkmark	

Technology Impact – Industry Engagement

Application	System	NPP
Differentiating	FW Pump-Motor	Monticello,
between component	set	Xcel
and sensor faults		
System-level diagnosis	PWR High-	North Anna,
	Pressure FW	Dominion
	System	
Incorporating Anomaly	FW Pump-Motor	Monticello,
Detection Approaches	set	Xcel
2	5	
System level sensor set	BWR FW Heater	Peach
analysis	Train	Bottom,
		Constellation

FW pump-motor set

Probability ranking of impeller fault

DIAGNOSTIC RESULT

Reasoning method: Probabilistic Faults, ranked by posterior probability:				
Ran	k Fault Name	Probability		
1	Pump-rfp11	0.81504		
2	SensorFault-rfp11:vflow:in	0.15186		
3	Bearings-rfp11	0.15186		
4	SensorFault-rfp11:press:in	0.11696		
5	SensorFault-rfp11:press:out	0.11696		
6	SensorFault-rfp11:rspeed:mid	0.00009		
7	SensorFault-rfp11:power:mid	0.00002		
8	SensorFault-rfp11:current:mid	0.00001		
9	Motor-rfp11	0.00000		

Engaging Industry – What they are asking for

A monitoring and diagnostic capability that has

- Greater specificity in terms of fault diagnosis
- A requisite specificity of fault diagnosis and an associated identifiable sensor set
- Advanced Reactor Developer(paraphrased)
 - "Give me a capability that I can use to defer periodic maintenance on a system that currently requires it"
- Nuclear Utility #1 (paraphrased)
 - "I want to expand diagnostic capability beyond our installed anomaly detection and thermal performance monitoring software"
- Nuclear Utility #2 (paraphrased)
 - "I would like through automation to have the option of not having to find a replacement for an individual who choses to retire in five years"

Utilities and advanced reactor developers engaged in PRO-AID applications

Progressing to a Full Capability

	Class of Application	Intended Use
1	Virtual Sensors	Survey/assess installed or proposed sensor set to understand how it might be modified to better inform.
2	Sensor Set Selection	Design a sensor set for M&D Center or for plant license extension.
3	PB Nominal Diagnoses	Off-line simulation-based look at diagnostic capabilities of installed sensor set or potential upgraded set.
4	Combined DD and PB Nominal Diagnoses	High-value version of Class 3 with respect to diagnoses rendered.
5	PB Probabilistic Diagnoses with Rank Ordering of faults	Real-time equipment condition
6	PB Probabilistic Inference of Fault Severity	Real-time equipment condition deep dive by engineered system specialist.
7	Combined DD and PB Probabilistic Rank Ordering	High-value version of Class 5 with respect to diagnoses rendered.

Realized capability

DD – Data Driven PB – Physics Based

Merging of Data-Driven and Physics-Based Approaches

- Physics-Based Knowledge
 - First principles physics-based models
- Data Driven Knowledge
 - Input-output mappings acquired by machine learning
- Time Series
 - Uncertainty captured by sequential analysis
- Automated Reasoning
 - Infer what is implied about the system from combined information of sensors and models representing physical laws

Diagnostic algorithm built on four elemental technologies

Transitioning PRO-AID Code for Use by Non-Experts

- Graphical User Interface Development
 - Current Focus: Building PIDs for PRO-AID
 - Creates the PID input files and allows for the detailed specifications for components and loop connections
 - Future Focus: Demonstration Environment
 - Operating on simulated data sources, provide a graphical representation of both the plant PID and the PRO-AID analysis

Graphical User Interface – PID Builder

Results and Accomplishments

PRO-AID User Guide and Version 1.0 Release

11

Results and Accomplishments

Live PRO-AID Demos Hosted for Industry

Demo 1 – Examining Some User Input Options

- How to modify the frequency at which the code outputs results
- How to adjust fault *prior* probabilities (i.e., the probability of a fault occurring based on historical data)
- Demo 2 Exploring the Dependence of what can be Diagnosed Given a Sensor Set
 - How to drop a sensor from the data sets ANL provided (e.g., dropping the motor power sensor)
- Demo 3 Modifying Data Sets to Investigate Diagnoses for Different Faults
 - How to inject a bias into one of the sensors in the data sets ANL provided (e.g., adding a bias to a pressure sensor)

Concluding Remarks - Publications

Journal Papers

- Nguyen, T., and R.B. Vilim, "A Probabilistic Model-Based Diagnosis Framework for Fault Detection and System Monitoring in Nuclear Power Plants," <u>Annals of Nuclear Energy</u>, August 25, 2020.
- Nguyen, T., Roberto Ponciroli, R., Vilim, R., "A Physics-Based Parametric Regression Approach for Feedwater Pump System Diagnosis," accepted for publication, <u>Annals of Nuclear Energy</u>, August 2021.
- Nguyen, T., and R.B. Vilim, "A Digital-Twin Approach to System-Level Health Monitoring for Increased Diagnosis Specificity," under revision, <u>Annals of Nuclear Energy</u>, October 2021.

Conference Papers

- Vilim, R. "Explainable Diagnostics Achievable Using Process-Based Automated Reasoning," 12th Nuclear Plant Instrumentation, Control and Human-Machine Interface Technologies, virtual meeting, June 14-17, 2021.
- Vilim, R. "A Physics-Based Automated Reasoning Approach for Sensor Set Assignment," 12th Nuclear Plant Instrumentation, Control and Human-Machine Interface Technologies, virtual meeting, June 14-17, 2021.

Panel Sessions

- R. Vilim, R. Ponciroli, D. Akshay, T. Nguyen, "Autonomous Power Plant Operation in a Net-Zero World," panel session presentation, EPRI AI and Electric Power Summit, Rome, Italy, October 4-6, 2022.
- R. Vilim and T. Nguyen, "Inclusion of Domain Knowledge in Time-Series Monitoring of Process Equipment," invited technical session presentation, EPRI AI and Electric Power Summit, Rome, Italy, October 4-6, 2022.

Patent Applications

- T. Nguyen, R. Vilim, and R. Ponciroli, "Fault Diagnosis Framework for Standalone Component," filed U.S. Patent Office, December 2020.
- T. Nguyen, R. Vilim, and R. Ponciroli, "Fault Diagnosis Framework for Multi-Component System," filed U.S. Patent Office, December 2020.
- R. Vilim, T. Nguyen and H. Wang, "Sensor Assignment Optimization," filed U.S. Patent Office, December 2020.

Contact Information

Rick VilimSenior Nuclear Engineer (ANL)rvilim@anl.govW (630)-252-6998https://www.anl.gov/profile/richard-b-vilimhttps://www.anl.gov/nse/ai-ml

Thank You