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Project Overview

Purpose: Advanced reactors will be difficult or impossible to inspect or monitor with existing
sensors and techniques. This project goal is to demonstrate feasibility of a high temperature
permanently installed sensor that can monitor a significant pipe or vessel material volume for

structural integrity.

Objectives: Ni Magnetostrictive Electromagnetic Acoustic Transducers (MSEMAT) are efficient at
generating guided wave ultrasound up to ~300 °C. This project is to design, build, and test a high
temperature cobalt MSEMAT for higher temperature advanced reactors — first to 350 °C with a
permanent magnet and then hopefully up to 800°C with an electromagnet. The test program will

show:

» Performance (S/N response to reference flaw) as temperatures ramp from 20°C to 350°C using a
permanent AINiCo magnet (no magnet wires). Note: Due to Contracts delays, purchased
hardware was delayed, and due to surprise behavior of Co, in FY24, only permanent AINiCo
magnet EMAT was tested.

» Performance of electromagnet using Magnetostrictive Co. Target test will be to 500, 600, 700,
and 800°C. This part of the program delayed until FY25.




MS EMAT principle of opperation

Magnetostrictive materials change
shape in response to a change in the
magnetic field. A magnetostrictive
cold spray sensor configured as
shown preferentially sends Shear
Horizontal Waves perpendicular to
coil and magnet N-S (Joule). These
waves will reflect from anomalies (like
cracks or welds or plate ends) and as
they pass through the magnetic field,
they produce a signal in the coll that
may be sensed. (Villari).

Magnet——

Serpentine EMAT coil
Ni or Co cold spray

SHo Ultrasound wave
reflecting from flaw —

~ /Connections to
current pulser and
sensor instrument




Laboratory EMAT on Cold Spray Ni detected 25% TW 6mm dia. Flat
Bottom Hole at a distance of 2-m
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Laboratory EMAT with permanent Response to 25% TW 6mm dia. Flat Bottom Hole at a distance of 2-m
magnet on Ni Cold Spray from sensor [S.W. Glass et. al. published in Materials Evaluation,
October, 2024]




Literature references show Cobalt magnetostriction to be ~ 2x that

of Ni
Magnetostrictive |Curie Reference
Coefficient (ppm) |Temperature °C
m -34 354-360 (Legendre and Sghaier 2011)
Cobalt (Co) ~-50 to -62 1121 (Kim and Yang 2018)
HCP@20°C (Britanica 2016) (Betteridge 1980)
Cobalt (Co) +50 1121 (Betteridge 1980)
FCC @ 547°C
Ferrous 70-90 977-1227 (MacLaren et al. 1999);
Cobalt (FeCo) (Nolte, Severin, and Hoffmann 2000)
250 700 (Britanica 2016)
20-30 770 (Britanica 2016)
2-10 750-770 (Britanica 2016)




One reference shows magnetostriction of Co range from -100 to +55

as a function of temperature
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The Cobalt Suprise

« As-sprayed Co had little or no magnetostrictive response

+ After thermal annealing (tested anneals to 500°C and 600°C), Co showed
magnetostrictive response that was ~ 32dB less than Ni. (literature values
expected +6dB greater than Ni. This would add a step to the cold spray and
sensor process but this kind of thermal annealing is possible and regularly
performed for weld stress relief.

« Co has two allotropic forms; a hexagonal-close-packed form (HCP), which is
stable at temperatures below about 400° C (673 K), and a face-centered cubic
form (FCC) that is stable at higher temperatures up to its melting point. At
atmospheric pressure, Co undergoes its phase transformation from HCP to
FCC at ~450-470°C.

« Co seems to saturate more readily than Ni. SuCo magnets required liftoff of
several inches. AINiCo magnets (<20% field strength) had superiorEMAT
performance.



High Temperature Tests (to 400°C) were performed on Annealed Co

Cold Spray with AINiCo permanent magnet
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MS EMAT response increased to 250°C, dropped at 300-350°C than
continued to increase. Although the non-monotonic temperature

response was not ideal, the plate end response at 4000C was 29% of

room temperature response. (Yea!)
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Second Plate-End response versus temperature (originating at 25°C, increasing to
400°C and returning back to 25°C). The drop in amplitude from 250-300°C is
unexplained however the high temperature signal was clear with a similar
signal/noise ratio at both 25 and 400°C.
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with an AINiCo magnet EMAT previously
heated to 400°C



Continuing Work

« Electromagnet test to higher temperatures. (EM shown to be noisier with a response 25% of the
room temperature AINiCo magnet). Hopes are still high for high temperature(>500°C) sensor
response.

* Repeat the high temperature test of the AINiCo magnet EMAT with silver wire. (the difficulty of
inconel sheath high temperature wire and unexpected drop then continued rise of the EMAT
response is unexplained, unexpected, and should be confirmed.

. Budget Permitting.

« EBSD micrograph to estimate phase distribution of annealed and unannealed Co.

« Make a revision-2 differential EMAT for lower noise sensor response (per INNERSPEC
recommendation)?

« Would like to publish at ASNT research symposium (December Abstract, June Conference in
Indianapolis).
« Submit entry to ASI sensor website.




Concluding Remarks/Questions/Comments

* The 400°C response with the AINiCo magnet showed a clear EMAT backwall
response confirming feasibility of using cold spray annealed Co for an EMAT
sensor.

* The electromagnet tests to date were noisier than the permanent magnet and
the field strength was less but backwall responses are clear at room
temperature and we are encouraged that the sensor should be able to go to
500°C and higher. This will be verified soon.

« Direct all Questions/ Comments to: Bill Glass; PNNL Advisor
Phone: 509 372 6190

Email: Bill. Glass@pnnl.gov
ORCID ID: 0000-0001-6723-4803
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DI9H60 Cobalt Magnetostrictive
ElectroMagnetic Acoustic Transducer

OVERVIEW

Purpose: Advanced reactors will be difficult or impossible to inspect or monitor with existing
sensors and techniques. This project goal is to demonstrate feasibility of a high temperature
permanently installed sensor that can monitor a significant pipe or vessel material volume for
structural integrity.

Objectives: Ni Magnetostrictive Electromagnetic Acoustic Transducers (MSEMAT) are efficient at

generating guided wave ultrasound up to ~300 °C. This project is to design, build, and test a high

temperature cobalt MSEMAT for higher temperature advanced reactors — first to 350 °C with a

permanent magnet and then hopefully up to 800°C with an electromagnet. The test program will

show:

» Performance (S/N response to reference flaw) as temperatures ramp from 20°C to 350°C using
a permanent SmCo magnet (no magnet wires). #

» Performance of electromagnet to 500°C. #

IMPACT

Logical Path:

Design the sensor based on Ni experience at room temperature but using materials that can withstand
higher temperatures and that can be tested in the available oven.

Identify magnetic material and high temperature wire vendors to fabricate critical components (magnet,
coil, connecting wires) and order components. (Long leads)

Assemble the EMAT - first with a permanent magnet (PM) good to 350°C.

Test the PM EMAT - ramp up to temperature and a long-term soak @ 350°C.

Assemble the Electromagnet (EM)EMAT that hopefully will function to 500°C.

Test the EM EMAT - ramp up to temperature and a long-term soak @ 500°C.

Expected outcomes are:

The sensor response will degrade with temperature but still should be sufficient to see the test flaw.
The PM EMAT will weaken due to well-understood material behavior as the magnet temperature
exceeds 350°C. The test must stay below that temperature.

The EM EMAT will fail above ~800°C due to well-understood material behavior. The test must stay
below that temperature.

DETAILS

Principal Investigator: Bill Glass; Team: Andy Casella, Morris Good, Kevin Gervais, Yanming Guo.

Institution: Pacific Northwest National Laboratory

Duration: 2 years Total Funding Level: $400,000
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Generous chamfer to avoid
cutting wires

TPOC: Chris Petrie

Nickel wire
weld pads

Federal Manager: Dan Nichols

X .
) ﬁ ) 13 mm

44 mm

Workscope: 3.01 Crosscutting Technology
Development (CT)

Iron or FeCo electromagnet with
several Ibs of magnet force @

8000C. | am thinking 1000 turns. 6.35mm

PICS:NE Workpackage #:
CT-24PN070208

74 mm

Coil embeddedin mica or
ceramicinsulation wafer with
coil extending beyond magnet

Need clever way to fix wafer to
edge to connect to ht wires Y to

electromagnetalso perhaps a
wire strain relief support

RESULTS

Results to date:

As sprayed Co shows suprisingly weak MS response. Heat annealing significantly improves the MS response.
Suprisingly, the response is weaker than Ni. AINiCo permanent magnet on the annealed Co sample plate
showed good backwall to 4000C.

Accomplishments:

AINiCo magnet EMAT on annealed Co sample tested successfully to 4000C.
Electromagnet tested at room temperature.
XRD tests showed a distribution of 2 Co phases after annealing but results were inconclusive for unannealed.

Upcoming Tasks:

Perform high temperature tests with permanent magnets and with electromagnets.

Cost Variance:

NA
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e Current State of the Art
= Why Wrought Products?

Our Approaches: Concept of Confined Rolling

Approach 1:
= Analytical Equations
= Modeling
= Experiments
= Summary

Approach 2:
= Analytical Equations
= Modeling
= Experiments
= Summary

Post Fabrication Testing

Next steps
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7 Current State of the Art and Concepts %
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Embedding sensors in wrought products has always been desired for a wide range of
applications, especially, in harsh conditions to detect off normal events.

External mount Welding Additive Manufacturing
' | Feedstock Foil

Base-Plate
= Sensors are glued/joined on external = Drilling holes and embedding sensors and = Embedding sensors in metal
surfaces welding plates additive components
» Limited applications in harsh » Component looses structural integrity, and welded > Component has as-cast
environments, looses integrity structure is not suitable in harsh environments microstructure

Wrought products are heavily used in nuclear and harsh environments

References

1. Functional fiber-optic sensors embedded in stainless steel components using ultrasonic additive manufacturing for distributed temperature and strain measurements, Additive Manufacturing 52
(2022) 102681.

2. Embedding sensors using selective laser melting for self-cognitive metal Parts, Additive Manufacturing 33 (2020) 101151.
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« Conventional processes such as rolling,
forging, extrusion and pilgering introduce
large plastic deformation and stresses

* These products are cheaper and faster to
make

« Known technologies and products
properties are well understood

Top roll

in

- Symmetry plane

Bottom roll

Preserving the structural integrity of the sensor

Systematically understanding the nature of stress and manipulating
the deformation mechanism we can place/ embedded sensors in
wrought products
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Analytical Calculation FEM Modeling Experimental
> Roll separation force » Fiber location » Rolling configuration

o e
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—~ Finite Element Model Setup for Hot
o Rolling of Wrought Product with Fiber
Northwest Empedded
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* Finite element method (FEM) model setup = @250 um drilled hole to = Baseline reduction
hold a 100 um fiber rate: 68.5%

2 mm
6.35 mm

» Fiber embedding cases with wrought product sized in 0.5” x 0.5” x 6.35 mm Al,Og fiber: 100 pm

- 9 8

Single fiber placed at the center 5 fibers placed vertically 5 fibers placed horizontally

Rigid roller (@ 4”)

Hot rolling
_direction

Glass fiber ‘E' *A quarter of domain is only
modeled due to symmetry

SS316L
wrought product
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4 Through Thickness Shear Strain: B

PaC|f|C ] ] V‘fi an. Reliable. Nuclear.
Northwest  Single vs Multi pass 0

" Single pass with different = Multiple passes with 21% reductions
reductions

68.5% reduction 1st pass

» No positive shear strain is obtained
2nd pass for multiple-pass case due to less
Ipt ZX-strain

— aggressive reduction for each pass
2.000e-01

1.600e-01 :I 31 pass
1.200e-01 _|

8.000e-02 _
4.000e-02
21.3% reduction -1.388e-17
-4.000e-02
-8.000e-02
-1.200e-01
-1.600e-01
-2.000e-01

52.8% reduction

37% reduction

> Rolled at 850°C 7
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Pacific Fiber experienced stressed:
Northwest  Single vs. Multi-pass Rolling
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» Sapphire (Al,O,) fibers experienced maximum stress during rolling (Single vs Multi pass)

Single pass Rolling Multi pass Rolling
12000 , 12000 . . . . . . :
- [ ]Single pass I Multi pass: 21%/pass [ |Multi-pass
10000 - ] 10000 - ]
@ ] i ‘@ 8000 - i
@ 8000 ©
= = |
& 6000 - - 5 6000 -
7)) n
o O
&5 4000 - - & 4000+ -
I Max. limit~ 2200 MPa - ! Max. limit~ 2200 MPa
72000 2 O 1 70101 1 X -
0 . 0 . : . L :
53 21 42 63 84
Rolling Reduction (%) Rolling Reduction (%)

» Multi-pass rolling less aggressive and adopted for initial trials
» Dividing the reduction into multiple passes can significantly reduce the stress in the fiber.




Pacific Model with Guided Tube:

Northwest  For better adherence of fibers and matrix

50% reduction
Pressure (MPa)
Deformed tube
Fiber
&b
Miniature tube dimensions

¢ ssateLTubes \
L oo 04064 mm) ob:0008" | Insertion of 316 tube along with fiber in 316 matrix
i o2oszmm is beneficial for bonding and reduces stress
i ID: 0.004” i
i (0.1016 mm) i
H ID: 0.01” ID: 0.008” !
i (0.254 mm) (0.2032 mm) i
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Fiber Assembly | Fiber Assembly Il

Bare fiber Fiber coated with
copper/aluminum
Rolling plate Rolling plate
assembly assembly

10




Pacific
Northwest (5.2 mm to 5.0 mm)

Embedded fiber:

» Rolling temperature: 900°C

» 5 min soaking time

» Total reduction: 20% (10%/pass)

Starting assembly 10% Rolled 20% Rolled

x%/ Approach 1 ENERGY | i svncy
Multi-pass Rolling: Up to 20% Rolled

| \Clean. Reliable. Nuclear.

t
Fiber (Al,O4

Radiography

» Fiber intact and visible after 20% reduction




Pacific
Northwest (5.2 mm to 3.1 mm)

Dimension Multi pass Temp (°C) Soaking (min) | Drilled hole/Fiber Observations
reduction (%)

x3/ Approach 1 ENERGY | 25 vener
Multi-pass Rolling: Up to 50% Rolled

Clean. Reliable. Nuclear.

2”x1” (6.2 mm thick) w/o channel (Dummy plate) Rolled, defects free
2 2”"x1”7 (6.2 mm thick) ~50 800 15 w/ channel (0.5 mm dia) + Tube Rolled, defects free
3 2”x1” (6.2 mm thick) ~50 800 15 w/ channel (0.5 mm dia) + Tube + Rolled, defects free
long Fiber
4  2"x1” (6.2 mm thick) ~50 800 15 w/ channel (0.5 mm dia) + long Rolled, defects free
Tube + long Fiber
+ .
Bare Steel +S5316 Tube Bare Steel +long SS316 Tube + long Fiber
' SS316 Tube  50% rolled (~10%/ pass) SS316 Tube

Fiber

50% rolled (~10%/ pass)

Fiber intact and adjusted to the length 12
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Cross-Sectional Microscopy: SEM

PaCifiC L] \ Clean. Reliable. Nuclear
Northwest ~ Analysis S vt o
SS316 + long Tube+ long Fiber (800°C, ~50%) SE Image
Rolling direction ——p
O — D —>

Cross section view

» Fiber intact and adjusted to the length
» Oxide layer can be addressed by cleaning
process and covers
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Pacific Performed targeted and successful experiments by % @ |
Northwest  ()tjlizing modeling

 Demonstrated and validated the models

» Successfully showcased that we can embed sensor

Cr K serles

using the first approach

* Deformation of pre-drilled holes with vertical and
horizontal orientations is studied with rolling reduction
up to ~50% at rolling temperature of 850°C.

* The through thickness shear strain is studied with

various reduction ratios.
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Diffusion Bonding of Two Plates with

Pacific
Northwest  RQ||S
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Clean. Reliable. Nuclear.

Approach 1 Approach 2 Approach 3

Sample Stack S'-“'"'F'hgl Stack )
0] (i)

After rolling

Hard plates I

Rolling Stack

Rolling Stack

L) L)
L) L

The concept of hot confined rolling to embed the sensor and minimize
stresses at the center of the sheet to minimize stresses at the sensor
location

The connections and Wires can be connected Initially during the
rolling process
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5 1"x0.5” (1.5 + 1.5 mm thick) ~62 900 5 w/ groove + Tube + Fiber Bonded

Optical - o SEM |

TR

» Two sheets were metallurgically bonded
» Steel sheet/tube bonded nicely
» No fiber/tube interface defects observed o “
e T S : PHFW ol P T —
L CBS OptiPlan 20.00kV 3.2nA 250x 829pum 10.0765 mm Apreo 2S ESC
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» Successfully showcased embedding sensor
using the second approach
* Analytical Model Predictions and

calculations validated for bonding

use case
OptiPlan 20.00 kV 3.2 nA Apreo 2S ESC
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NDE: Ultrasonic test

(1) NDE Testing: Ultrasonic test and Radiography

» Continuity of fibers after rolling
» Detect processing defects, such as voids, debonding,
delamination etc. NDE: Radiography

(2) Functionality testing: Wavelength attenuation/
amplitude of laser signal, dB

» Continuity of the optical fibers
» Performance of the fibers at elevated temperature and
strain
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» Continue cross sectional microscopy- Examine the interface of fiber/matrix

» Continue non-destructive characterizations- UT, radiography and X-ray CT for fiber continuity
study

» Fabrication with SIO, fiber Bragg grating (FBG)- Au or Cu or Al coating

» Testing the embedded fiber assemblies in ORNL with the help of Chris Petrie

Concept can be applied to other forms as well
Rolling Sheet = Rod or Tube

Sheet rolling Rod rolling/ Groove rolling Tube rolling/ Pilger rolling

Metals 2020, 10(1), 81. 1. hetps:/’wnww.manufacturingguide.comienfrod-rolling 1. Intemational Journal of Material Forming (2021) 14:533-545,
The 12th International Conference on Numerical Methods in Industrial 2. Appl. Sci. 2021, 11(23), 11285.
Forming Processes, MATEC Web Conf., 80 (2016).
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Thank you
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