

Office of **NUCLEAR ENERGY**

Advanced Sensors and Instrumentation

Reactor Power Monitoring - INL

Advanced Sensors and Instrumentation (ASI) Annual Program Webinar November 4, 6-7, 2024

Nuclear Engineer: Kevin Tsai, Tommy Holschuh

Idaho National Laboratory – INL/MIS-24-82400

Project Overview (Summary)

The goal of the INL reactor power monitoring work package is to evaluate and develop in-core neutron flux sensors in support of upcoming advanced reactor demonstrations.

- High-temperatures
- Spectral sensitivity
- Low-flux

Technology of focus:

- Self-powered neutron detectors (SPND)
 - Passively generate electric current in a radiation field
 - Only operates in current mode
- Fission chambers (FC)
 - Detection of fission events via ionization of fill gas
 - Operates in pulse mode, Campbelling mode, and current mode

SPND overview sketch

FC overview sketch

Project Overview (Schedule)

FY 24 activities:

- M3CT-24IN0702011 (Carryover) Performance benchmark of commercial fission chambers in elevated temperatures
 - Completed milestone report 11/30/2023
- M3CT-24IN0702012 (Carryover) Demonstration of temperature compensation techniques for SPNDs operating in high temperature environments
 - Completed (late) milestone report 6/30/2024
- M2CT-24IN0702013 Development of neutron energy spectrum unfolding methods using SPNDs.
 - Completed milestone report 9/30/2024
- M4CT-24IN0702014 Assessment of neutron flux sensors for monitoring advanced reactor concepts operating with low neutron fluence rate and extended uninterrupted lifespans.
 - Completed milestone report 7/31/2024
- (Ongoing) M4CT-24IN0702015 Conceptual design of an experiment for demonstration of neutron spectrum unfolding and reactor power controls.
 - Due 11/30/2024 on schedule.

Project Overview (Participants)

I would like to acknowledge and thank all members that contributed to this work:

OSU-NRL:

Andrew Kauffman, Susan White, Kevin Herminghuysen, and Matthew Van Zile

CEA: Loïc Barbot and Grégoire de Izarra

ORNL: Callie Goetz and Tony Birri

INL:

Tommy Holschuh, Teancum Quist, Michael Reichenberger, and Geran Call

Technology Impact

Success under this work package will lead to methods for monitoring and control for advanced reactors designs – specifically focusing on high-temperature fast reactors and small modular/microreactors.

Examples listed by under Advanced Reactor Demonstration Program:

- Natrium Reactor (TerraPower) 350°C
- Xe-100 (X-Energy) 750°C
- KP-FHR (Kairos Power) 650°C
- <u>eVinci (Westinghouse Nuclear) 650°C</u>
- BANR (BWX Technologies) target 1000 1400°C
- MCFR/MCRE (SC/TP) 600°C
- <u>SMR-300 (Holtec International)</u>

Example of neutron energy spectrum for LWR and SFR

https://www.energy.gov/ne/articles/infographic-advanced-reactor-development

https://www.energy.gov/sites/default/files/2020/05/f74/Advanced-Reactor-Types_Fact-Sheet_Draft_Hi-Res_R1.pdf

OSURR Heated Irradiation

- 9.5 in. inner diameter dry-tube
- -24 in. L $\times 2$ in. inner diameter furnace
- 2 Irradiation performed for fission chambers and SPNDs

September irradiation sensor setup

December irradiation sensor setup

24" Furnace temperature and flux profile

24" Furnace at OSU

9.5" Dry-tube experiment

September Fission Chamber Irradiation Plan

- 3 days of irradiation
 - Days 1 and 2 are for testing sensor operability at relevant temperatures
 - Day 3 is to test sensor limits and identify failure points

Day 1 Experiment				
Power	Duration	Temperature		
100 W	1 hr	Ambient		
100 W	15 min each	Ambient		
1 kW	(+5 min per power			
10 kW	change)			
100 kW	and the second se			
200 kW				
1 kW	1 hr	Heat to 350°C		
1 kW	15 min each	350°C		
10 kW	(+5 min per power			
100 kW	change)			
200 kW				
1 kW	1 hr	Heat to 600°C		
1 kW	15 min each	600°C		
10 kW	(+5 min per power			
100 kW	change)			
200 kW				

Day 2 Experiment

Power	Duration	Temperature
100 W	1 hr	Ambient
100 W	15 min each	Ambient
1 kW	(+5 min per power	
10 kW	change)	
100 kW		
200 kW		
1 kW	1 hr	Heat to 650°C
1 kW	15 min each	650°C
10 kW	(+5 min per power	(
100 kW	change)	
200 kW		
1 kW	1 hr	Heat to 700°C
1 kW	15 min each	700°C
10 kW	(+5 min per power	
100 kW	change)	
200 kW		

Day 3 Experiment

Power	Duration	Temperature
100 W	5 min each	Ambient
	(+5 min per	600°C
	temperature	650°C
	change)	700°C
Sec. 1		750°C
100 W	15 min each	750°C
1 kW	(+5 min per power	
10 kW	change)	
100 kW		100 March 100
200 kW		12
450 kW		
1 kW	1 hr	Heat to 850°C
1 kW	15 min each	850°C
10 kW	(+5 min per power	TI SALITA MARA
100 kW	change)	1/ 1/1/16/44/444
1 kW	1 hr	Heater off

Fission Chamber Results

• Detector response overview

Max temp 600°C

Day 3 Experiment Max temp 850°C

Fission Chamber Results

• Detector sensitivity as a function of temperature

Fission Chamber Results

- 3mm Fission Chamber Failure
 Mode
- Failure of the gas-chamber seal
 - Occurs at 750°C near power increase
 - Loss of fill-gas pressure
 - Decrease in count rate over time
 - Increase in average pulse width
 - Decrease in average pulse amplitude
- High voltage decrease from 250V to 150V

3mm fission chamber failure observed

progression

Concluding Remarks

Overview of Fission Chamber Activity

Performed heated irradiation of commercial fission chambers at OSURR for temperature ranges of $600 - 850^{\circ}$ C.

- Demonstrated the advantages of pulse mode operation informed potential fabrication improvements
- Identified drawback of current mode operation at temperature over saturation of signal from leakage currents
- M3CT-24IN0702011 Performance benchmark of commercial fission chambers in elevated temperatures
 - Completed milestone report 11/30/2023

December SPND Irradiation Plan

- 3 days of irradiation
 - Days 1 is to test temperature effects at low power
 - Day 2 and 3 is to test sensor limits and identify failure points

Day 1 Experiment

Power	Duration	Temperature
10-30W	15-30 min each	Ambient
	(+5min per	550 °C
	temperature	575 °C
	change)	600 °C
		625 °C
	1000	650 °C
2		675 °C
- A 100		700 °C

Day 2 Experiment

Power	Duration	Temperature
100 W	1 hr	Ambient
100 W	15 min each	Ambient
1 kW	(+5 min per power	
10 kW	change)	
100 kW		
1 kW	1 hr	Heat to 350 °C
1 kW	15 min each	350 C
10 kW	(+5 min per power	
100 kW	change)	
1 kW	1 hr	Heat to 600 °C
1 kW	15 min each	600 °C
10 kW	(+5 min per power	
100 kW	change)	
1kW	30 min for gamma	625 °C
	stable initial	650 °C
	15-30min ea	
	(+5 min per	
	temperature)	

Day 3 Experiment

Power	Duration	Temperature
100 W	1 hr	Ambient
100 W	15 min each	Ambient
1 kW	(+5 min per power	
10 kW	change)	
100 kW		
1 kW	1 hr	Heat to 700 °C
1 kW	15 min each	700 °C
10 kW	(+5 min per power	
100 kW	change)	
1 kW	1 hr	Heat to 850 °C
1 kW	15 min each	850 °C
10 kW	(+5 min per power	11 110
100 kW	change)	1 and

Self-Powered Neutron Detector Results

Detector response overview

Reactor Power

Thermocouples

Rh-SPNDs

12

11

13

15

16

14

Self-Powered Neutron Detector Results

• Detector modeling for temperature effects

Self-Powered Neutron Detector Results

- Modeling electron distribution from neutron and gamma contribution
- 500 keV threshold determined from Warren' model¹ for qualitative view of "trapped electron"
- Gamma-induced electron density has higher fraction in the 0-500 keV energy range
 - Expected to be the root cause of temperature effects
- Neutron-induced effects are super-imposed, as observed.

1H. D. Warren, "Calculational Model for Self-Powered Neutron Detector," Nuclear Science and Engineering, vol. 48, no. 3, pp. 331-342, 2017, doi: 10.13182/nse72-a22491.

Self-Powered Neutron Detector Results

- From the total gamma-induced distribution, an electric field and potential in the insulator can be calculated along with a critical radius, r_c
- Ratio of charge in radius R < r_c over R > r_c is 60%
 - Expect an increase in signal with heating to release "trapped" electron

Self-Powered Neutron Detector Results

Curve-fitting of the released electron under temperature ramps for compensation algorithm

Self-Powered Neutron Detector Results

• Fitting results and comparison to underlying models for photoconduction and ionic conduction.

$$i_T(T,t) = a_1 e^{-a_2/kT} e^{a_4(T)(t-t_0)} + a_5$$

- a_1 is the proportional value related to the field strength
- a₂ is the energy necessary to free the electron from the imperfection and impurity sites to the conduction band
- a_4 is related to the relaxation time constant. This is expected to increase in magnitude (decreasing decay timeconstant) with increasing temperature with a proportionality of $-a_4^{-1} \propto R$ (insulator resistance)
- a₅ is the expected relaxed steady-state signal at temperature a dark current. It is related to leakage current as well as low-energy electron emission, however, its behavior in irradiation environments is not well understood.
- Transition points are at 850K and 950K photoconduction to ionic to electronic conduction

Concluding Remarks

Overview of Self-Powered Neutron Detector Activity

Performed heated irradiation of self-powered neutron detectors at OSURR for temperature ranges of 550 – 700°C for characterizing temperature effect

- Failed to demonstrate algorithm for removing the temperature effect due to lack of data.
- Future work to better characterize the insulator properties for an SPND is needed.
 - Consideration for a heated gamma irradiation as (γ , e) effects are the primary cause of temperature effects.
- M3CT-24IN0702012 Demonstration of temperature compensation techniques for SPNDs operating in high temperature environments
 - Completed (late) milestone report 6/30/2024

Spectral Unfolding Self-Powered Neutron Detectors - Introduction

- Based on method of dosimetry and spectrum adjustment algorithm
- Dosimeter packages are "custom" designed based on operational requirements:
 - Total reaction rate
 - Reaction rate range
 - Half-lives

Example of a spectrum coverage with titanium, iron, and cobalt wires.

INL Dosimetry design spreadsheet

Spectral Unfolding Self-Powered Neutron Detectors - Introduction

- This work contains three parts:
 - Design and verification of a dosimetry package as a reference ATRC
 - Evaluation of SPND emitters that are suitable for spectral unfolding TRIGA w/ Cd cover
 - Development of a live visual spectral unfolding algorithm

Example of a spectrum coverage with titanium, iron, and cobalt wires.

Spectral Unfolding Self-Powered Neutron Detectors - Dosimetry

- Dosimetry activation verification is performed at the ATRC.
 - ATRC provides a low flux to identify lower limits for threshold reactions (fast spectrum detection)
 - Fast turnaround to demonstrate additional "novel" dosimetry methods to be considered for calibrating SPNDs

Spectral Unfolding Self-Powered Neutron Detectors - Dosimetry

- Acceptable reaction rate
- High uncertainty tied to counting order and priority.

Au-197(n,y)Au-198 Cu-63(n,a)Co-60 Cu-63(n,y)Cu-64 Fe-58(n,y)Fe-59 Fe-56(n,p)Mn-56 Fe-54(n,p)Mn-56					
Au-197(n,y)Au-198 Cu-63(n,a)Co-60 Cu-63(n,y)Cu-64 Fe-56(n,p)Mn-56 Fe-56(n,p)Mn-56 Fe-54(n,p)Mn-54		ATRC Run	23-4 Dosimetry Coverage ovel Dosimetry Set		100
Au-197(n,γ)Au-198 Support Cu-63(n,a)Co-60 Cu-63(n,γ)Cu-64 Fe-58(n,γ)Fe-59 Fe-56(n,p)Mn-56 Fe-54(n,p)Mn-54		Thermal	Epithermal	Fast	10" (X) 10 ⁻¹ LIN 10 ⁻¹ LIN
Cu-63(n,α)Co-60 Eu-63(n,γ)Cu-64 Fe-58(n,γ)Fe-59 Fe-56(n,p)Mn-56 Fe-54(n,p)Mn-54	Au-197(n,γ)Au-198				10 ⁻² g
² ² ² ² ² ² ² ² ² ²	2 Cu-63(n,α)Co-60				10 ⁻³ III
δ Fe-58(n,γ)Fe-59 Fe-56(n,p)Mn-56 10 ⁻⁶ Fe-54(n,p)Mn-54 10 ⁻⁶	2 5 Cu-63(n,γ)Cu-64				10 ⁻⁴ €
Fe-56(n,p)Mn-56	Fe-58(n,γ)Fe-59				10 ⁻⁵ Â
Fe-54(n,p)Mn-54	Fe-56(n,p)Mn-56	, y			u be
414	Fe-54(n,p)Mn-54				10 ⁻⁷ U
10^{-11} 10^{-9} 10^{-7} 10^{-5} 10^{-3} 10^{-1} 10^{1}	1	10 ⁻⁹ 10 ⁻⁷	10-5 10-3 10-1	101	

Interaction	Predicted Activity (uCi/g)	SE-2 Measured Activity (uCi/g)	2σ % Total Uncert.	C/E SE-2	SE-4 Measured Activity (uCi/g)	2σ % Total Uncert.	C/E SE-4
Ti-46(n, p)Sc-46	1.74E-06	4.46E-05	17.86%	3.90E-02	2.49E-04	9.51%	6.99E-03
Ti-47(n, p)Sc-47	6.24E-05	1.34E-03	3.65%	4.66E-02	1.65E-02	3.47%	3.78E-03
Ti-48(n, p)Sc-48	1.71E-05	2.88E-04	7.26%	5.94E-02	2.08E-03	4.26%	8.22E-03
Co-59(n, γ)Co-60	6.59E-03	3.97E-02	3.06%	1.66E-01	5.39E-02	3.06%	1.22E-01
Co-59(n, α)Mn-56	5.95E-05	6.01E-01	3.17%	9.90E-05	8.08E-01	3.20%	7.36E-05
Ni-58(n, p)Co-58	1.31E-04	1.94E-03	4.46%	6.75E-02	1.26E-03	6.21%	1.04E-01
Fe-54(n, p)Mn-54	1.97E-06	3.29E-05	18.73%	5.99E-02	4.16E-05	7.35%	4.74E-02
Fe-56(n, p)Mn-56	3.78E-04	2.29E-02	4.88%	1.65E-02	1.84E-02	4.00%	2.05E-02
Fe-58(n, γ)Fe-59	2.73E-05	2.59E-04	7.78%	1.05E-01	2.36E-04	7.35%	1.16E-01
Ag-109(n, γ) Ag-110m	2.97E-03	1.07E-02	6.57%	2.78E-01	1.16E-02	6.26%	2.56E-01

Pr Interaction A (redicted Mea Activity Act (uCi/g) (uC	sured 20 % sured Tota tivity Unce Ci/g)	6 C/E I rt. SE-2	Measured Activity (uCi/g)	2σ % Total Uncert.	C/E SE-4
Fe-54(n, p)Mn-54 1	.97E-06		-	5.87E-05	48.03%	3.36E-02
Fe-56(n, p)Mn-56 3	.78E-04		-	1.93E-02	16.89%	1.96E-02
Fe-58(n, γ)Fe-59 2	.73E-05 3.13	3E-04 44.19	% 8.72E-0	2 4.65E-04	25.27%	5.87E-02
Cu-63(n, γ)Cu-64 1.	.30E+00 1.50	E+01 4.64	% 8.67E-0	2 1.55E+01	5.08%	8.39E-02
Cu-63(n, α)Co-60 2	.29E-08		-	3.11E-04	29.06%	7.36E-05
Au-197(n, γ)Au-198 7.	.01E+00 1.00)E+00 3.47	% 7.01E+0	0 1.21E+00	3.81%	5.79E+00

Spectral Unfolding Self-Powered Neutron Detectors – Emitter Search

- SPND reactions from all potential elements were added to the dosimeter search list
- The emitter sensitive ranges with and without cadmium cover were calculated

TRIGA spectrum w/ and w/o Cd cover for SPND emitter search

Potential SPND emitter sensitivity range based on reference spectra

Element	Thermal	Fast
Ве	Х	Х
Sc	Х	_
Ti	Х	Х
V	Х	Х
Cr	Х	Х
Fe	Х	Х
Ni	Х	Х
Cu	х	Х
Y	Х	Х
Zr	—	Х
Мо	—	Х
Ru	—	Х
Rh	Х	—
Pd	—	Х
Nd	—	Х
Sm	Х	Х
Gd	—	Х
Tb	Х	Х
Dy	Х	_
Но	Х	_
Er	Х	Х
Tm	Х	_
Lu	Х	—
Hf	Х	Х
Та	Х	—
W	—	Х
Re	Х	_
lr	Х	_
Pt	—	Х
Au	Х	

Application range of elements

Thermal

Rh

lr

Dy

Spectral Unfolding Self-Powered Neutron Detectors – Emitter Search

A narrowed down list is available:

Rh is a good choice for thermal as it is a commonly used SPND

Gd

W

Pt

Gd is a specific design only tested at INL/TREAT, so Pt is chosen as another common type SPND.

Concluding Remarks

Overview of Spectrum Unfolding Activity

Performed ATRC irradiation of dosimetry sets to test activation limits

- Verified acceptable limits based on ATRC flux
- Demonstrated capability for "novel" dosimetry technique
- Performed evaluation for SPND emitter
- Integrated SPND reactions to dosimetry spreadsheet
- Identified emitter sensitivity range
- Selected Rh and Pt as candidates for spectral unfolding
- M2CT-24IN0702013 Development of neutron energy spectrum unfolding methods using SPNDs.
- Completed milestone report 9/30/2024
 - Spectrum unfolding algorithm presented in Pacific Basin Nuclear Conference 2024: Teancum Quist, "Curve Fitting Parameterization of Neutron Spectra"
 - Dosimetry results submitted for ANIMMA 2025
 - Drafting manuscript of M2 report for journal publication

Kevin Tsai

Nuclear Instrumentation Engineer (INL) kevin.tsai@inl.gov W: (208) 526-2828 ORCiD: 0000-0002-8879-3468

Office of **NUCLEAR ENERGY**

Advanced Sensors and Instrumentation

Reactor Power Monitoring – INL

Reactor Dosimetry Complement to Self-Powered Neutron Detectors

Advanced Sensors and Instrumentation (ASI) Annual Program Webinar November 4, 6-7, 2024

Nuclear Engineer: Tommy Holschuh, Ph.D.

Idaho National Laboratory – INL/MIS-24-81823

Project Overview

The measurement of neutron energies in a reactor or reactor experiment is a crucial method for determining quantities of interest

- Material reaction rates
- Experiment's reactivity worth as a function of energy
- Reactor kinetics parameters
- Confirmation of computational model physics

Radiochemistry and Nuclear Measurements:

- Tommy Holschuh, Ph.D.
- Teancum Quist, Ph.D. (postdoctoral researcher)

Radiation Measurements:

- Michael Reichenberger, Ph.D.

Measurement Sciences:

- Kevin Tsai

Technology Impact

Comprehensive reactor dosimetry can include up to 30 material reactions

- There are many instances where a smaller subset must be used.
 - Space, applicability of wires, etc.
- Image to right shows 3 wires (Ti, Fe, Co) that provide 7 neutron energy groups.
- Disadvantage not real time, activation materials must be removed from reactor.
- The objective of the reactor dosimetry connected to ASI is to validate a method for performing crude neutron energy group measurements with SPNDs rather than a suite of wires.

Technology Impact

Comprehensive reactor dosimetry can include up to 30 material reactions

- There are many instances where a smaller subset must be used.
 - Space, applicability of wires, etc.
- Image to right shows 3 wires (Ti, Fe, Co) that provide 7 neutron energy groups.
- Disadvantage not real time, activation materials must be removed from reactor.
- The objective of the reactor dosimetry connected to ASI is to validate a method for performing crude neutron energy group measurements with SPNDs rather than a suite of wires.

Presented at American Nuclear Society Pacific Basin Nuclear Conference (October 2024)

- The neutron spectrum (typically 100's of energy groups) is fit with curve types
 - Depending on neutron physics in region
- This allows two SPNDs to manipulate four equations
 - Opposed to 3 wires, 1000 neutron energy groups
- Pt, Rh have different neutron responses, so the signals will affect each "curve" separately.

Concluding Remarks

- Proof of concept for performing reactor dosimetry with just two SPNDs has not been shown yet
 - Reactor experiments can be performed several different ways.
- In FY25, this is our goal.
- Curve fitting parameterization may need to be "tweaked."
- Reactor experiments will have a backup of traditional dosimetry as a comparison for "fitted" parameters in the neutron energy curve.

Tommy Holschuh, Ph.D.

Nuclear Engineer tommy.holschuh@inl.gov W (208) 526-1975 | C (505) 417-4294 ORCiD: 0000-0002-1521-4314

Office of **NUCLEAR ENERGY**

Advanced Sensors and Instrumentation

Thank You

