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Simulate Sensor Responses

Project Overview

« The goal of this project is to utilize a weighting
function based method to synthesize core power
based on simulated sensor responses

— Reactor models come from MCNP, sensor physics can come |
from Geant4

* Looking at multiple reactors in order to assess

— Impact of sensor uncertainty
— What types of perturbations can be accurately detected
— Sensor arrangement optimization

 |n FY23, there were to main focuses:
1. Assess impact of sensor uncertainty in AP1000 and |
NuScale SMR :

2. Develop a highly realistic model and demonstrate
perturbation detection w/ TAMU TRIGA

» Participants
ORNL: Anthony Birri (PI), Callie Goetz (Geant4 modeling),
Daniel Sweeney (python expertise), N. Dianne Bull Ezell
(supervision)
TAMU: Tyler Gates (TAMU, MCNP modeling)
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Overview of Methodology

The method we have developed is
coined the “Point Based lterative”
(PBI) method

— ltis fundamentally a weighting function
based method

The idea is that each sensor can
provide an estimate of the power in
each ‘chunk’ of fuel via a response
function

— MCNP informed flux data

Through a weighted average, each

[1] DOL:
10.2172/1996662
[2] DOI:
10.1016/j.pnucene.
2022.104437
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Technology Impact

It is clear that core power shape synthesis is utilized by industry

* However, efficacy of implemented methods in software is
unclear

Suanary Results Fil
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« A small body of research literature exists, but there are still

many questions which remain, regarding optimization,

uncertainty, etc.
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Developments to Date

« The current project stems from previous work with OFBGT development at OSU
— A method was developed to synthesize core power based off of an OFBGT array
[2] DOI: 10.1016/j.pnucene.2022.104437

* This method was demonstrated experimentally in the OSURR
. . [3] DOI: 10.1016/j.pnucene.2020.103552
— Reasonable agreement, sensor design could be improved 14] Birri, Dissertation (2021)

 The method was adapted to intake SPND data at ORNL
— A study was conducted to assess core follow impact on a variety of sensor-core configurations
— Studied in the context of AP1000 and NuScale SMR

' . . Adaptation to SPNDs, and further
Experimental Application analysis (2021-present)
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Next Gen LWR Model Details AP1000

 NuScale SMR and AP1000 are pressurized
LWRs

« They both use SPNDs, assumedly
Vanadium emitters

« Assumed power distributions determined
heterogeneously

« Response functions determined
homogenously (i.e. less realistic sensor
responses)
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Next Gen LWR Uncertainty Analysis Results

« Varied SPND uncertainty and number of SPNDs per string, assessed error in power synthesis
— Increasing uncertainty results in increased average error (not a surprise), close to a 1:1 trend
— Minimal benefit to increasing number of SPNDs per string from 3 to 10

« AP1000 slightly more prone to error for same SPND uncertainties
Distribution of Error: Reactor Comparison w/ 1% SPND uncertainty
Nu Scale SMR
14.0% 1 AP1000
NuScale Error Results
. 12.0% -
1% SPND Uncertainty 4 SPNDs per string
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Simple Schematic

TAMU TRIGA Model Details Power Distribution o -roasn

. = Instrumented Fuel

© = Control Rod
© =Sensor String

MCNP Model B C D E E
el , [0ejee] [oe0e®
|:| = UZrH [:|=Aluminum Y025 z 6 .:C::O. .C: :C::
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_ B s S ; 0000000000
B = water [ = steel | . 0000000000
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included. o0
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R
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.
=
=
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x

« Pool-type research reactor w/ TRIGA elements (UZrH fuel)
* 17 modeled string locations, 4 SPNDs assumed per string

« Heterogeneous power distribution and response function
calculations (more realistic)

[1] DOI: 10.2172/1996662
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TAMU TRIGA Perturbation Analysis Results

« Considered a Gaussian type Perturbation centered on instrumented :le”e' Fin .
. = Instrumente ue
fuel pin (© = Control Rod
— Variance of Gaussian was 0.125 m & = SensorSuing
« Average error in synthesized distribution was 0.19%, general shape B C D E FE
IS clearly accurate , [0oj0® Y I X
* Note: SPND responses assumed to be responding perfectly ® :::: :! .0: :::
6
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Geant4 Integration

Heterogenous ReaCtor
MCNP Tallies Geometries
Infer Power

* Developed a Geant4 SPND model to integrate Distribution

with power synthesis software PSS @0 e

— Monte Carlo sensor modeling package developed by

CERN
* Currently, analytical models are utilized —— e
— Doesn’t account for neutron self-shielding MCNP Tallies Parameters

— Doesn’t account for electric field effects in insulator

« Preliminary results w/ NuScale highlight impact - Currant (Goantl)
of self-shielding on current response | 6.0014 0
* Currently working on Geant4 model E-field 10 10,0013 5
optimization, and software integration 5 0.0012
S 1073 3
s -0.00112
% 10-51 -0.0010 g
g -D.OOOQE
1075 -0.0008 £
\ =

. . . . ‘ . r0.0007
POC for Geant4: Callie Goetz Y Deancem



Impact of perturbation

FO”OW_On Work amplitude on error (TAMU)
n 701 » err((P*'F))max s K
" : Sgpf * CEMUPTag . 4
« Perform additional analyses with TAMU TRIGA B . . 5
to identify trends in perturbation variables on Tk e 30
synthesis error 5 %] & . N
* After integration of Geant4, reassess é jz i . 9
uncertainty impacts in next gen LWRs = * 1
 Collaborate with INL for future experimental 0 | | | lo
collaboration with SPNDs for core power 905 A0 0020
monitoring
 |dentify potential for connection between the _
power synthesis software developed at ORNL Scope Monitoring

and PRO-AID developed at ANL

|
Model Experimental
Ta S k Integration
ANL: PRO- INL: SPND
AID array

ORNL:

Lab Role [k

Synthesis




Concluding Remarks

« Power synthesis is a crucial core monitoring capability which reactor operators must have for
safe operations

« ORNL is addressing some of the many questions in this scope with targeted studies of
uncertainty, perturbations, and sensor arrangement alterations

 AP1000 and NuScale SMR have served as model test beds for sensor uncertainty analysis

« A high fidelity, realistic TAMU TRIGA MCNP model has been used to develop a highly realistic
modeling framework, which has been demonstrated with perturbation detection simulation.
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Wireless Instrumented Removable beryllium Experiment (WIRE-21)

Il

« Most highly instrumented experiment in Al
HFIR's 58-year history e

Reflector Boundary

MIC1

e Designed to test several sensing
technologies in real-time

— Validate instruments for future real-time in-core
testing

Upper Holder

— Compare against established technologies

e Three primary zones (holders) for
experiment arrangement and heat
transfer

— Active temperature & pressure control

MIC4

e Primary purpose 1o test wireless sensors
developed by Westinghouse Electric
Company (WEC) for 3 HFIR cycles

Lower Holder

\
\
~
S
| ~.
E N



Westinghouse Electric Compan

« WEC wireless pressure sensor [1]
— Moveable ferritic core connected to bellows

— Inductive coupling energizes sensing and reference
inductors

— Probed using complimentary receiving inductors

« WEC wireless temperature sensor [1]
— Tungsten cylinder acts as fuel surrogate material

— Thermocouple attached for local temperature
monitoring

— Wire wrap operates as resistance temperature
detector (RTD)

[1] J. Carvajal, et al., US Pat. 10832825 B2 (Nov. 10, 2020) &

Wireless In-core Instruments

Bellows Gas Line

Pressurized Bellows

Sensing Inductor

PR REF!

Wireless Pressure Tungsten — >
Sensor =
RTD Wire — =
Mineral Insulated :
Cables =
Wireless Temperature
Sensor :
Sensing RX Tungsten Fuel
Inductor Surrogate
‘ Sensing RX
—
TX Inductor / Indietey
Sensing
l Inductor
TX Inductor
""" RTD
S
&

iPressure Sensor !
. Circuit Diagram |

Reference RX
Inductor

Reference Inductor

US Pat. 10811153 B2 (Oct. 20, 2020)

A3 REF §

iTemperature Sensor|
Circuit Diagram

17



WIRE-21 Instrumentation

« Temperature, pressure, neutron flux
measured in multiple positions along
reflector %

— Total of 70 independent measurements (‘;\ fj@\
— 7 measurement techniques T -
» Collected in real-time and through PIE I

10 |

« Spatially discrete and continuous
measurements

« Range of technological maturity

-10

HFIR Elevation (cm)
o

-20 |-

WIIEIESS

WIRE-21 measurement methods

-30L

« WEC Wireless « WEC Wireless
. » Self-Powered Neutron
Active + Thermocouple

 Optical Fiber D
. WIRE-21 instrumentation locations
Passive . SiC Thermometry « Activation Flux Wires



SPND Devices

3.96 mm O.D. 3.20 mm I.D.

 Emitter: V (62.6+0.1 mg) N\
* Insulation: MgO

» Collector: Inc600 '

* Leads: Inc600 =

« Positioned =5, &= 15 cm g e
above/below HFIR midplane '

3.18 mm O.D.

0.51 mm
2.01 mm I.D.

.........

WIRE-21 SPND

Radial
Position

SPND Dimensional Comparison
Radius emitter Radius insulator

WIRE-21 0.255 1.6
Thermocoax 0.25 0.43 [3]
INL Small 0.24 0.575 [4]
INL Large 0.39 0.69 [4] Permanent Be
o ) Removable Be Flux Trap
[3] Vermeeren, et al., ANIMMA 2019, EPJ Web of Conferences 225, 04015 (2020) Flux activation wires Control Plates

[4] Palmer, et al., Conceptual Design Report for the 12 Instrumentation Experiment in ATRC. INL/MIS-19-55710 (2019) SPND Positions




SPND Theory

Current (I,) under steady state:

T1=3.76m (225 5s)
Ip=kXNxXo.Xx®xXe ki

Step increase in neutron flux:
51V

I(t) =1, <1 — exp <_ ln(Tzl) a t)) g, =49b

2

S52\/

Step decrease in neutron flux:

I1(t) =1, exp(

T1

—In(2) X t)

2

Where

k = detection efficiency factor

N = number of useful target nuclei in emitter
0. = neutron capture cross section

® = neutron flux

e = elementary charge

Ti= emitter isotope half-life Adapted from Moreira & Lescano,
Z Ann. Nucl. Energy 58 (2013) 90.




Radiation Transport Modeling

30

» Representative geometry and materials of WIRE-21 v
modeled using ORNL developed HFIRCON [5] code — sPpEem

== SPND-C (-5 cm)
— Time-dependent, coupled radiation transport and T SRR Cisem 20y
depletion code

— WIRE-21 geometry divided into 1 cm axial /
subsections

— Modeled for 10 timesteps over one 26-day HFIR cycle
— Cells separated into “core facing” and “reflector facing”

35

w
=]
T

10

Midplane Elevation (cm)
=3

Neutron Flux (1E14 n/cm?/s)
~ )
) n

to capture shielding effects s o
« HFIRCON model provides I RS |
o 5 10 15 20 25 4
- 256 group neutron flux Day of HFIR Cycle Neutron Flux (1E14 n/cm?/s)
N - g (Left) Modeled time dependent, thermal neutron flux (E,<0.025
Material heat generatlon rates eV) for each SPND. (Right) Spatial- and time-dependent thermal
« Prompt gamma, neutron neutron flux across reflector.

» Fission product decay heat
» Local activation/decay heat

[5] C. Daily, et al., "HFIRCON Version 1.0.5 User Guide," ORNL/TM-
2020/1742: Oak Ridge National Laboratory, Oak Ridge, TN (2020).




WIRE-21 Assembly and Installation

®
Upper Holder and SiC Thermometry




SPND Measurement Configuration

Current measured using Keithley 6482 Dual
Channel Picoammeter

3 different configurations for each cycle
Cycle 498

— x4 SPNDs, emitter wire only

Cycle 499

— x4 SPNDs, emitter/compensation differential signal

Cycle 500

— X2 SPNDs, emitter and compensation separately

Gamma Compensation Wire </
Custom Preamp
I == — R OR s
\/

DAC

Custom PCB for passthrough or differential measurement




WIRE-21 Operational History

3 HFIR cycles
— 75 effective full power days (EFPDs)

— 5.8 X 10%1 n/cm?2 thermal fluence

« Multiple temperature and pressure
manipulations during reactor operation

« Startups and SCRAMs provided interesting 1,8 K i

transients for SPND investigation \

Reactor Power (MW)

Reactor Power (MW)
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Reactor Power Transients (498)

» Reactor power raised to 10 MW several
times during startup

 SPND-A,-C,-D showed similar but unusual i
v 2 0. W
— Prompt negative current 0.0¢

SPND-B
(nA)

— Exponential positive current o z N\ VK
. ] . i 22 f
« SPND-B exhibited linear increase in £} v r

current with steady power 0r

— Assumed SPND-B was either broken during
installation or compensation wire was being
measured

SPND-D
(A)
<
4

.............................

.

)

g

=

A~ 20

g

15}

: UL N
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Signal Curve Fitting

SPND signal following power decrease was fit
to equation of the form:

I(t)= A+ Bxexp(pXxt) + C*exp(q Xt)
Exponential coefficients showed good
agreement with T, ,= 225 s of >2V for -C/-D

— Validates slow response signal is neutron capture in V
Less conclusive for -A (T; ,,=700 s)

— Likely caused by large difference in magnitude
between y and neutron signal
Gamma component had very short
(prompt)time constant (3-13 s) and negative
contribution in all 3 SPNDs

SPND-A (nA)

e
u-

e
o

—0.5

SPND-C (nA)

SPND-D (nA)

=]
T

10

10 MW Transient #1

10 MW Transient #2

—— 6.74E-01%exp(-In(2)/703.2%t)
Combined Fit

SPND-A Signal

——4.82E-01*exp(-In(2)/13.6%t)
..............................

0.25F

0.00

-0.25F

—0.50

0.50 |-

SPND-A Signal
== -4.60E-01*exp(-In(2)/13.5%t)
= 6.57E-01*exp(-In(2)/718.7*t)

- —e— SPND-C Signal

[ = -8.68E-01*exp(-In(2)/3.1*t)

[ = 2.19E+00*exp(-In(2)/229.1*t)

o = Combined Fit
\

L —e— SPND-C Signal

[ —— -6.87E-01*exp(-In(2)/4.7%t)
—— 2.19E+00%exp(-In(2)/231.1%t)

N —— Combined Fit

7]
L

3 —o— SPND-D Signal

r ——  2.33E+00%exp(-In(2)/12.1%)
- ——  L17E+01%exp(-In(2)/254.5%t)
I —— Combined Fit

—eo— SPND-D Signal
i — 2.36E+00%exp(-In(2)/11.6%t)
i ——  L17E+01%exp(-In(2)/258.7*t)
= (Combined Fit

Signal curve fitting for cycle 498 startup transient (0.4 and 1.6 hrs)




SPND Temperature Response

- Experiment temperature was increased o "
stepwise for WEC sensors during cycle 498 — DD
« SPND-C/-D signals followed temperature of . , e rme—
increase, though in different directions S
« Doppler broadening should result in £ i -
: = Eg W
increased SPND signal ,«J W
.................. see?!

= Hig her temperature COUId be perturbing _10;00 10;30 11;00 T.II;S?h) 12;00 12;30 13;00
neutron energy in 1/v region

\ Siny™v
107 @ L B R R
1%k
10"
o | |
3" m
&° 10 | ."'J.
Y
10°
i ~— 00253 eV 3
107 E
104: s vl vl el v vl vl el ol vl 3ol o |_
1010 10® 10® 107 10® 10° 10* 10° 107 10" 10° 10
£[MeV]

Moreira & Lescano, Ann. Nucl. Energy 58 (2013) 90.



Concluding Remarks

« WIRE-21 experiment was performed in 2022 to test novel in-pile sensors
* Included the first SPND flux measurements in HFIR

« Three SPNDs demonstrated neutron induced signal

« Two SPNDs agreed with modeled flux trends

« SPNDs showed response to temperature

« Future SPNDs require optimization to mitigate gamma signal
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