

SURROGATE MODELS FOR REAL TIME MULTI-ASSET CONTROL

HAOYU WANG, ROBERTO PONCIROLI, RICHARD VILIM Argonne National Laboratory

ANDREA ALFONSI Ultra Safe Nuclear Corporation

Advanced Reactor Controls Workshop July 12-14, 2023, Argonne National Laboratory, Lemont IL

OBJECTIVES

- Real-time simulation of Digital Twins is mandatory when introducing Advanced Reactors to electrical grid.
- Digital twins of various complexity levels:
 - High-fidelity model for off-line applications, which can be slow in execution
 - Exploration of the operational margin;
 - Optimization of design parameters, etc.
 - Surrogate model for on-line applications, which needs to be fast in execution
 - Real-time control and performance optimization;
 - Economic dispatch optimization, etc.
- We introduce a novel data-driven method to derive surrogate models from High-Fidelity Digital Twins, to be used by advanced control algorithms, for real-time multi-asset control.

WHAT IS SURROGATE MODEL?

- High Fidelity Digital Twin (HFDT):
 - Solving for physics-based equations, highresolution results;
 - Tracking of 1,000+ process variable response;
 - Long execution time (10s to simulate 1 hour);
 - Not ideal for repetitive execution.

- Surrogate Model:
 - Derived from physical HFDT, use linear functions to capture system dynamics;
 - Predict a few state / output variables with physical meanings;
 - Fast in execution (1ms to simulate 1 hour);
 - Ideal for repetitive execution.

CHALLENGES AND SOLUTION

- State variables (x) selection is the key in statespace model derivation.
 - Challenges in state variable selection:
 - Data only, no physics-based equations;
 - 1,000+ candidates, impossible to test all possible combinations;
 - Need a consistent set of variables to cover all known operational conditions.
- Developed solution: RFE-DMDc
 - Recursive Feature Elimination (RFE):
 - · Identify the most impactful candidates, reduce the search domain;
 - Dynamic Mode Decomposition with Control (DMDc)
 - Derive the dynamics through data;
 - Cross correlation
 - · Resolve cross-talks between multiple assets.

TEST-CASE AND DATA

A thermally coupled power system simulator is used as the HFDT.

Three sub-systems:

- Balance of Plant;
- Thermal Energy Storage;
- Gas Turbine.

Variables:

- 3 inputs;
- 6 outputs;
- 7,087 recorded process variables.

Thermal couplings between two subsystems

TEST-CASE AND DATA

Power transient data under 72 possible operational conditions are simulated through HFDT:

- Each case contains 22-hour transient;
- Execution time of each case ~110 second.

Training and testing Scheme:

- Train on the first 80% of the data
- Test on the final 20% of the data

PREDICTION ACCURACY OF SURROGATE MODEL

- A surrogate model with 11 selected state variables are built, using Training data only;
- This model provides accurate prediction of the state and output responses, but 6,000 times faster;

- Time to reconstruct the final 4.4-hour response: 3.2 ms
- In contrast, HFDT takes 22 seconds

CONCLUSIONS

- A data-driven approach was developed to derive surrogate models for real-time multiasset control.
- The surrogate model learns from cold-start and steady data, and provide accurate prediction on key process variables.
- Computational burden can be reduced by 6,000 ~ 7,000 times, which made it deployable for massive repetitive executions.
- Such surrogate model can be deployed in advanced control loop, which aids the real-time performance optimization, and improves the efficiency and flexibility of operation.

THANK YOU

www.anl.gov

BACK-UP SLIDES

www.anl.gov

STATE VARIABLE SELECTION ALGORITHM: DMDC-RFE

1. Derived A^d and B^d matrices represent the bestfit, the first linear equation does not hold exactly:

 $\vec{x}(k+1) \approx A^d \vec{x}(k) + B^d \vec{u}(k)$

2. A^d and B^d matrices can be constructed by collecting temporal snapshots of the system states $\vec{x}(k)$ and inputs $\vec{u}(k)$ over *l* time steps:

$$X' = \begin{bmatrix} | & | & | & | \\ x(2) & x(3) & \cdots & x(l) \\ | & | & | & | \end{bmatrix}$$
$$X = \begin{bmatrix} | & | & | \\ x(1) & x(2) & \cdots & x(l-1) \\ | & | & | & | \end{bmatrix}$$
$$U = \begin{bmatrix} | & | & | \\ u(1) & u(2) & \cdots & u(l-1) \\ | & | & | & | \end{bmatrix}$$

3. Rewrite the equation in a matrix form to include the new data matrices:

$$\mathbf{X}' \approx A^d \mathbf{X} + B^d \mathbf{U}$$

STATE VARIABLE SELECTION ALGORITHM: DMDC-RFE

Dynamic Mode Decomposition with Control (DMDc)

4. Concatenate using
$$G = [A^d, B^d]$$
 and $\Omega = [X, U]^T$:
 $X' \approx G\Omega$

5. Perform singular value decomposition (SVD) to Ω : $\Omega = U\Sigma V^* \approx \widetilde{U}\widetilde{\Sigma}\widetilde{V}^*$

where $\widetilde{U} \in \mathbb{R}^{(n+m) \times q}$, $\widetilde{\Sigma} \in \mathbb{R}^{q \times q}$, and $\widetilde{V} \in \mathbb{R}^{(l-1) \times q}$ are the truncated SVD components.

6. Since \widetilde{U} and \widetilde{V} are unitary matrices, $\widetilde{\Sigma}$ is diagonal: $G \approx X' \widetilde{V} \widetilde{\Sigma}^{-1} \widetilde{U}^*$

7. Breaking the linear operator \tilde{U} according to the dimensions of $\vec{x}(k)$ and $\vec{u}(k)$

 $\begin{bmatrix} \tilde{A}^d & \tilde{B}^d \end{bmatrix} \approx \begin{bmatrix} X' \tilde{V} \tilde{\Sigma}^{-1} \tilde{U}_1^* & X' \tilde{V} \tilde{\Sigma}^{-1} \tilde{U}_2^* \end{bmatrix}$ ¹²

8. The C^d , D^d matrices in the second equation $\vec{y}(k) = C^d \vec{x}(k) + D^d \vec{u}(k)$ can be treated in the similar way.

But if D^d matrix is assumed to be zero in the studied system:

$$\vec{y}(k) = C^d \vec{x}(k)$$

9. Construct the matrix of temporal snapshot of system output vector $\vec{y}(k)$:

$$Y = \begin{bmatrix} | & | & | \\ y(1) & y(2) & \cdots & y(l-1) \\ | & | & | \end{bmatrix}$$

10. C^d matrix can be found through pseudo inverse: $\tilde{C}^d \approx YX^{-1}$

STATE VARIABLE SELECTION ALGORITHM : DMDC-RFE

DMDc with Recursive Feature Elimination (DMDc-RFE)

Stage 1, Pre-Filtering:

1,000+ process variables \rightarrow 10s candidates

1.a. Perform pair-wise linear correlation analysis for all the recorded variables, and remove:

- Constant variables, and
- Mutually linear-correlated variables;

1.b. Perform an iterative ranking and feature elimination:

- Construct an evaluation model on a complete feature space $\tilde{C}^d \approx YX^{-1}$
- Compute a ranking criterion showing the importance of each variable;
- Remove the variable with lowest importance iteratively.
- A set of candidates is derived $[x_1, x_2, ..., x_n]$

1.c. For systems with multiple sub-systems:

• Perform 1.b to assess each sub-system independently:

 $\tilde{C}^{d,A} \approx Y^A (X^A)^{-1}$ $\tilde{C}^{d,B} \approx Y^B (X^B)^{-1}$

and two sets of candidates are derived (x^{A} and x^{B}): $x^{A} = [x_{A}^{A} x_{A}^{A} x_{A}^{A}]$

$$x^{B} = \begin{bmatrix} x_{1}^{B}, x_{2}^{B}, \dots, x_{n} \end{bmatrix}$$
$$x^{B} = \begin{bmatrix} x_{1}^{B}, x_{2}^{B}, \dots, x_{n}^{B} \end{bmatrix}$$

• The two sets of state variable are analyzed with a cross-correlation technique, to account for the cross-talk between sub-systems

STATE VARIABLE SELECTION ALGORITHM : DMDC-RFE

DMDc with Recursive Feature Elimination (DMDc-RFE)

Stage 2, Parallel searching :

10s candidates \rightarrow Optimal set of State variables

Parallel looping through all possible combinations of variables from the candidates of $[x^A, x^B, x^{A \rightarrow B}, x^{B \rightarrow A}]$. For each combination:

2.a. Derive A,B,C matrices through DMDc;

2.b. Evaluate the predicted state variables $\hat{x}(k \ge 0)$ and the output variables $\hat{y}(k \ge 0)$:

 $\hat{x}(0) = \vec{x}(0)$ $\hat{x}(k+1) = \tilde{A}^d \hat{x}(k) + \tilde{B}^d \vec{u}(k), k \ge 0$ $\hat{y}(k) = \tilde{C}^d \hat{x}(k), k \ge 0$

2.c. Calculate the cost function:

- Mean square error (MSE) of predicted state $\hat{x}(k \ge 1)$ and the known state $\vec{x}(k \ge 1)$, and
- MSE of the predicted output $\hat{y}(k \ge 1)$ and the known output $\vec{y}(k \ge 1)$.

Finally, selects the combination that minimizes the cost function, as the result.

